

What Is the Role of Real-World Evidence in AI Device Approval?

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: December 13, 2022 | FDA Regulation and Compliance

DOI: [10.5281/zenodo.17998489](https://doi.org/10.5281/zenodo.17998489)

Abstract

The integration of Artificial Intelligence (AI) into medical devices is revolutionizing healthcare, offering unprecedented opportunities for diagnostics, treatment, and patient monitoring. However, the path to regulatory approval for these innovative devices is complex. Traditionally, randomized controlled trials (RCTs) have been the gold standard for demonstrating safety and efficacy. Yet, the dynamic and adaptive nature of AI algorithms presents challenges for this traditional paradigm. As a result, Real-World Evidence (RWE) is emerging as a critical component in the evaluation and approval of AI-enabled medical devices.

What Is the Role of Real-World Evidence in AI Device Approval?

By Rasit Dinc

Introduction

The integration of Artificial Intelligence (AI) into medical devices is revolutionizing healthcare, offering unprecedented opportunities for diagnostics, treatment, and patient monitoring. However, the path to regulatory approval for these innovative devices is complex. Traditionally, randomized controlled trials (RCTs) have been the gold standard for demonstrating safety and efficacy. Yet, the dynamic and adaptive nature of AI algorithms presents challenges for this traditional paradigm. As a result, Real-World Evidence (RWE) is emerging as a critical component in the evaluation and approval of AI-enabled medical devices.

The Shift Towards Real-World Evidence

Real-World Data (RWD) refers to data collected from sources outside of traditional clinical trials, such as electronic health records (EHRs), medical claims, and patient-generated data from wearables and mobile apps. When RWD is analyzed to generate clinical evidence on the usage and potential benefits or risks of a medical product, it becomes RWE. The U.S. Food and Drug Administration (FDA) has recognized the potential of RWE to provide a more comprehensive understanding of how AI devices perform in real-world settings, across diverse patient populations and clinical environments.

Benefits of RWE in AI Device Approval

1. **Enhanced Generalizability:** Unlike the controlled environment of RCTs,

RWE reflects the heterogeneity of real-world clinical practice. This allows for a more accurate assessment of an AI device's performance across a broader range of patients and conditions, leading to more generalizable and robust conclusions.

2. Continuous Monitoring and Adaptation: AI algorithms can learn and evolve over time. RWE enables continuous monitoring of device performance after it has been deployed, allowing for the identification of potential issues and the implementation of necessary updates or modifications. This is particularly crucial for adaptive AI systems that are designed to change based on new data.

3. Accelerated Innovation and Approval: The use of RWE can streamline the regulatory process, potentially accelerating the approval of innovative AI devices. By leveraging existing data sources, manufacturers can generate evidence more efficiently and cost-effectively than through traditional clinical trials.

Challenges and Considerations

Despite its promise, the use of RWE is not without its challenges. The quality and reliability of RWD are paramount. Issues such as data heterogeneity, missing data, and potential biases in data collection can impact the validity of RWE. Ensuring data privacy and security is another critical concern, as RWD often contains sensitive patient information.

To address these challenges, the FDA has been actively developing a framework for the use of RWE in regulatory decision-making. This includes guidance on data standards, methodologies for RWE generation, and best practices for ensuring the transparency and reproducibility of RWE studies.

The FDA's Stance and Future Directions

The FDA has shown a clear commitment to incorporating RWE into the regulatory landscape for AI-enabled medical devices. The agency has issued guidance documents and is actively seeking public input on how to best evaluate the real-world performance of these devices. The focus is on a risk-based approach that considers the potential impact of the AI device on patient safety and clinical outcomes.

Looking ahead, the role of RWE in AI device approval is expected to grow. As data collection and analytical methods become more sophisticated, RWE will play an increasingly important role in the entire lifecycle of AI-enabled medical devices, from pre-market approval to post-market surveillance. The collaboration between regulatory agencies, industry, and the healthcare community will be essential to fully realize the potential of RWE to bring safe and effective AI innovations to patients.

Conclusion

The integration of RWE into the regulatory framework for AI-enabled medical devices represents a significant paradigm shift. While RCTs will continue to play a vital role, RWE offers a complementary approach that provides a more

holistic and dynamic assessment of device performance. By embracing RWE, we can foster innovation, accelerate the approval of life-saving technologies, and ultimately, improve patient care in the era of AI-driven healthcare.

References

[1]: Alipour-Haris, G., et al. (2024). *Real-world evidence to support regulatory submissions*. British Journal of Clinical Pharmacology, 90(8), 1835-1847. <https://pmc.ncbi.nlm.nih.gov/articles/PMC11295294/> [2]: Koski, E., & Santamäki, T. (2025). *Towards responsible artificial intelligence in healthcare: a scoping review*. Journal of the American Medical Informatics Association, 32(11), 1746-1755. <https://academic.oup.com/jamia/article/32/11/1746/8264332> [3]: Mahadik, S., et al. (2025). *Harnessing digital health technologies and real-world data for evidence generation in rare diseases*. Frontiers in Medicine, 12, 1406804. <https://pmc.ncbi.nlm.nih.gov/articles/PMC12290384/> [4]: Podichetty, J. T., et al. (2025). *How AI Transforms Regulatory Submission*. Cureus, 17(5), e75531. <https://pmc.ncbi.nlm.nih.gov/articles/PMC12675821/>

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2022 Rasit Dinc