

What Is the Role of AI in Poison Control?

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: May 17, 2015 | AI in Emergency Medicine

DOI: [10.5281/zenodo.17999353](https://doi.org/10.5281/zenodo.17999353)

Abstract

Poison control centers are essential for managing poisonings, but they face challenges like high call volumes and the need for quick, accurate decisions. Art...

What Is the Role of AI in Poison Control?

Author: Rasit Dinc

Introduction

Poison control centers are essential for managing poisonings, but they face challenges like high call volumes and the need for quick, accurate decisions. Artificial intelligence (AI) is emerging as a key technology to help, promising to improve the speed and accuracy of poison management.

This article will explore AI's role in poison control, its applications, benefits, and challenges.

AI Applications in Poison Control

Poison Prediction and Diagnosis

A major challenge in toxicology is identifying the poison when a patient cannot provide a clear history. AI systems can analyze patient data to predict the likely toxin.

For example, **ToxNet**, an AI trained on over 780,000 poison control calls, has shown remarkable accuracy in predicting poisons, sometimes outperforming clinical toxicologists [1].

Improving Diagnostic Accuracy

AI algorithms are also improving diagnostic accuracy. Machine learning models can now distinguish between different single-agent poisonings with high specificity. A study by Mehrpour et al. demonstrated a model that could differentiate between eight common drug poisonings with over 92% specificity [2].

Vector Recognition

Computer vision is another AI application, helping to identify venomous creatures and toxic plants from images. This is crucial for snakebites and accidental poisonings, where quick identification is vital for treatment [3, 4].

Predictive Analytics and Triage

AI can also predict the severity of a poisoning, helping to triage patients and prioritize those at highest risk. For instance, AI models can predict the need for intubation in methanol poisoning cases with high accuracy [5].

Clinical Decision Support

Clinical decision support systems powered by AI can provide evidence-based treatment recommendations. These systems can suggest appropriate treatments, such as the correct antidote dosage. An XGB model, for example, can predict the necessary naloxone dose for opioid toxicity [6].

Toxicovigilance

AI is also important for toxicovigilance, the monitoring of poisoning trends. By analyzing data from sources like social media, AI can identify new drug abuse patterns or poisoning outbreaks, allowing for timely public health interventions [7].

Benefits of AI in Poison Control

The benefits of AI in poison control include:

Increased Speed and Accuracy: *AI can process vast and complex datasets at a speed and scale unattainable by human experts, leading to faster and more accurate diagnoses.* ***Improved Patient Outcomes:*** By facilitating more rapid and precise diagnosis and treatment, AI has the potential to significantly improve patient outcomes and save lives. ***Enhanced Efficiency:*** *AI can automate many of the routine and time-consuming tasks in poison control centers, thereby freeing up human experts to focus on the most complex and critical cases.* ***24/7 Availability:*** AI-powered systems can be made available around the clock, providing instantaneous advice and support to those in need.

Challenges and Limitations

However, there are challenges to AI adoption in poison control:

Data Quality and Bias: *The performance of AI models is intrinsically linked to the quality of the data they are trained on. Incomplete, inaccurate, or biased data can lead to flawed predictions and recommendations.* ***Regulatory and Ethical Concerns:*** The use of AI in clinical practice raises a host of regulatory and ethical questions that need to be carefully considered and addressed. ***Clinician Trust and Usability:*** *For AI to be effective, healthcare professionals must be able to trust the recommendations it provides. Furthermore, AI systems must be designed to be user-friendly and seamlessly integrated into existing clinical workflows.* ***Cost of Implementation:*** The development and implementation of sophisticated AI systems can be a costly and resource-intensive endeavor.

The Future of AI in Poison Control

The future of AI in poison control is promising. As the technology and data improve, we can expect more advanced AI tools. The integration of data from wearables and IoT devices will allow for real-time monitoring and early detection of toxic exposures.

Conclusion

AI has the potential to transform poison control, making it faster and more accurate. While challenges remain, the benefits are significant. By embracing AI, we can better protect the public and improve patient outcomes.

References

- [1] Zellner, T., Romanek, K., Rabe, C., Schmoll, S., Geith, S., Heier, E. C., ... & Eyer, F. (2023). ToxNet: an artificial intelligence designed for decision support for toxin prediction. *Clinical Toxicology*, 61(1), 56-63.
- [2] Mehrpour, O., Hoyte, C., Delva-Clark, H., et al. (2022). Classification of acute poisoning exposures with machine learning models derived from the National Poison Data System. *Basic Clin Pharmacol Toxicol*, 131(6), 566-574.
- [3] de Castañeda, R., et al. (2019). Empowering neglected communities and health care providers by embracing the artificial intelligence revolution for snakebite identification. *The Lancet Digital Health*, 1(7), e329-e330.
- [4] Wagner, F. L., et al. (2021). Methods for mushroom data creation and curation to support classification tasks. *arXiv preprint arXiv:2106.02684*.
- [5] Moulaei, G., et al. (2022). Deep learning and machine learning models for prediction of intubation necessity in methanol-poisoned patients. *BMC Medical Informatics and Decision Making*, 22(1), 1-11.
- [6] Mohtarami, A., et al. (2021). A machine learning approach to predict naloxone dose and duration of administration in opioid toxicity. *Journal of Medical Signals and Sensors*, 11(4), 269.
- [7] Sato, T., et al. (2022). Identifying trends and patterns in drug misuse using natural language processing of social media posts. *Journal of Medical Internet Research*, 24(10), e39903.