

What Is the Role of AI in Acne Treatment Planning?

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: March 15, 2015 | AI in Dermatology

DOI: [10.5281/zenodo.17999371](https://doi.org/10.5281/zenodo.17999371)

Abstract

Acne vulgaris is one of the most common skin conditions globally, affecting millions of individuals and carrying a significant physical and psychosocial burden...

What Is the Role of AI in Acne Treatment Planning?

Author: Rasit Dinc

Acne vulgaris is one of the most common skin conditions globally, affecting millions of individuals and carrying a significant physical and psychosocial burden. While traditional treatment approaches have been effective to a degree, the advent of artificial intelligence (AI) is heralding a new era in dermatology, offering the promise of more personalized, efficient, and accessible care. This article explores the burgeoning role of AI in acne treatment planning, from diagnosis and severity assessment to personalized interventions and patient engagement.

AI-Powered Diagnosis and Severity Assessment

The foundation of effective acne treatment lies in an accurate diagnosis and a precise assessment of its severity. AI, particularly through machine learning and deep learning algorithms, has demonstrated remarkable capabilities in this domain. AI-powered applications can analyze high-resolution skin imagery to detect and classify different types of acne lesions, such as comedones, papules, pustules, and nodules, with a high degree of accuracy [1].

A 2023 study published in *Frontiers in Medicine* detailed the development and validation of an AI-powered acne grading system that not only identifies various lesion types but also correlates them with severity grading [3]. The study found that the AI system could grade acne with a performance comparable to that of experienced dermatologists. This technology offers a standardized and objective method for assessing acne severity, which can be particularly valuable in clinical trials and for monitoring treatment progress over time.

Personalized Treatment Planning

Beyond diagnosis, AI is instrumental in crafting personalized treatment plans. By analyzing a vast array of data, including patient history, genetic predispositions, lifestyle factors, and even the skin's microbiome, AI models can predict which treatments are most likely to be effective for a particular individual. This data-driven approach moves beyond the traditional one-size-fits-all model of care, paving the way for precision dermatology.

AI algorithms can also predict treatment outcomes, providing both clinicians and patients with a clearer understanding of the expected results. For instance, AI can simulate the potential effects of different treatment modalities, such as topical retinoids, oral antibiotics, or isotretinoin, on a patient's skin. This predictive capability can help manage patient expectations and improve adherence to the prescribed treatment regimen.

Enhancing Patient Engagement with Virtual Reality

The integration of AI with other advanced technologies, such as virtual reality (VR), is further transforming the landscape of acne management. A 2025 article in the *Journal of Cosmetic Dermatology* highlights how AI-powered VR can create immersive and interactive experiences for patients [1]. For example, VR simulations can provide patients with a virtual "before-and-after" visualization of their skin, demonstrating the potential impact of a proposed treatment. This not only enhances patient education but also fosters a stronger sense of trust and collaboration between the patient and the clinician.

Challenges and the Future of AI in Acne Treatment

Despite the significant promise of AI in acne treatment, several challenges remain. A scoping review published in the *International Journal of Dermatology* in 2025 pointed out the issue of bias in AI model training [2]. The review found that only a small percentage of studies reported on the ethnic diversity of the patient data used to train the AI models. This lack of diversity can lead to disparities in the accuracy of AI-driven diagnosis and treatment recommendations for individuals with different skin tones. Addressing this bias is crucial to ensure that AI-powered solutions are equitable and effective for all patient populations.

The future of AI in acne treatment is bright, with ongoing research focused on developing more sophisticated and robust algorithms. The use of ensemble models, which combine multiple machine learning models to improve predictive performance, has shown particularly promising results [2]. As these technologies continue to evolve, they are likely to become an indispensable tool for dermatologists, enabling them to provide more precise, personalized, and proactive care to their patients.

Conclusion

Artificial intelligence is poised to revolutionize the field of dermatology, and its impact on acne treatment planning is already being felt. From enhancing diagnostic accuracy and enabling personalized treatment strategies to

improving patient engagement, AI offers a wealth of opportunities to improve the management of this common and often distressing skin condition. While challenges such as data bias must be addressed, the continued development and refinement of AI technologies hold the key to a future where acne treatment is more effective, accessible, and tailored to the unique needs of each individual.

References

- [1] Goldust, M. (2025). AI-Powered Virtual Reality in Acne Vulgaris. *Journal of Cosmetic Dermatology*, 24(3), e70104. <https://pmc.ncbi.nlm.nih.gov/articles/PMC11883727/>
- [2] Frederickson, K. L., Gui, H., Barbieri, J. S., & Daneshjou, R. (2025). Artificial Intelligence Use in Acne Diagnosis and Management—A Scoping Review. *International Journal of Dermatology*. <https://onlinelibrary.wiley.com/doi/10.1111/ijd.70110?af=R>
- [3] Li, J., Du, D., Zhang, J., Liu, W., Wang, J., Wei, X., ... & Diao, P. (2023). Development and validation of an artificial intelligence-powered acne grading system incorporating lesion identification. *Frontiers in Medicine*, 10, 1255704. <https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2023.1255704/full>

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2015 Rasit Dinc