

What Are the Applications of AI in Acute Care Settings?

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: March 22, 2021 | AI in Emergency Medicine

DOI: [10.5281/zenodo.17998653](https://doi.org/10.5281/zenodo.17998653)

Abstract

Artificial intelligence (AI) is rapidly transforming healthcare, with a profound impact on acute care settings. The high-pressure, data-rich environments of ...

What Are the Applications of AI in Acute Care Settings?

Author: Rasit Dinc

Introduction

Artificial intelligence (AI) is rapidly transforming healthcare, with a profound impact on acute care settings. The high-pressure, data-rich environments of emergency departments (EDs), intensive care units (ICUs), and emergency medical services (EMS) are ideal for AI integration. These technologies can enhance clinical decision-making, streamline workflows, and improve patient outcomes. This article explores AI's current and emerging applications in acute care, from emergency medical dispatch to the ICU, and discusses the challenges and future of this technological revolution.

AI in Emergency Medical Dispatch (EMD)

The initial contact in a medical emergency is often a call to emergency services, where efficiency and accuracy are critical. AI is optimizing this process. For instance, AI-powered systems can act as a "second listener" during emergency calls, using automatic speech recognition (ASR) to identify keywords indicating a life-threatening condition like an out-of-hospital cardiac arrest (OHCA). A retrospective study showed an AI-driven ASR system outperformed human dispatchers in recognizing OHCA, with a median time to recognition of 72 seconds versus 94 seconds [1]. By providing real-time prompts and suggesting critical follow-up questions, these systems help dispatchers gather essential information more rapidly and accurately, leading to more effective resource allocation and pre-arrival instructions.

AI in the Emergency Department (ED)

The ED is a chaotic environment where clinicians make rapid decisions with limited information. AI applications are being developed to support ED operations, from triage to diagnosis and documentation. AI-driven triage models leverage patient data, including vital signs, chief complaints, and medical history, to predict patient outcomes and acuity more accurately than traditional methods. This allows for more efficient resource allocation, ensuring that the most critical patients are seen first.

AI is also enhancing medical imaging interpretation in the ED. Deep learning models, trained on vast datasets of medical images, can detect subtle abnormalities in X-rays, CT scans, and other imaging modalities with an accuracy that is on par with, and sometimes exceeds, that of human radiologists [1]. This expedites diagnoses and reduces missed findings. AI is also streamlining medical documentation. Machine learning-based speech recognition and transcription systems can automatically generate comprehensive case notes, freeing up clinicians to spend more time with their patients [2].

AI in the Intensive Care Unit (ICU)

The ICU is another data-intensive environment where AI is making significant inroads. Continuous monitoring of critically ill patients generates massive amounts of data. AI-powered early warning systems can analyze this data in real-time to identify subtle patterns that may indicate impending clinical deterioration, such as the onset of sepsis or respiratory distress. This allows for proactive interventions that can improve patient outcomes.

In addition to predictive analytics, AI is also being used to provide treatment suggestions in the ICU. By analyzing a patient's clinical data and comparing it to a vast database of similar cases, AI algorithms can recommend personalized treatment strategies. While still in early development, these systems promise to augment the decision-making of intensivists and improve the quality of care for critically ill patients.

Challenges and Future Outlook

Despite the immense potential of AI in acute care, several challenges must be addressed before widespread adoption. These include ethical and legal concerns related to data privacy and algorithmic bias, and technical challenges related to data integration and model validation. It is crucial that AI systems are rigorously tested and validated in real-world clinical settings to ensure their safety and efficacy.

Looking to the future, the integration of large multimodal generative models has the potential to revolutionize acute care. These models can process and synthesize vast amounts of diverse biomedical data, including clinical notes, medical images, and genomic data, to provide comprehensive decision support to clinicians. As these technologies continue to evolve, they will undoubtedly play an increasingly important role in the delivery of acute and intensive care medicine.

Conclusion

AI is no longer a futuristic concept in acute care; it is a reality that is already transforming the way we deliver care. From optimizing emergency medical dispatch to enhancing diagnostics in the ED and providing decision support in the ICU, AI-powered solutions are helping to improve efficiency, reduce errors, and improve patient outcomes. While challenges remain, the future of AI in acute care is bright, promising a more proactive, personalized, and data-driven approach to medicine.

References

- [1] Biesheuvel, L. A., Dongelmans, D. A., & Elbers, P. W. (2024). Artificial intelligence to advance acute and intensive care medicine. *Current Opinion in Critical Care*, 30(3), 246–250. <https://doi.org/10.1097/MCC.0000000000001150>
- [2] Meyer, L. M., Stead, S., Salge, T. O., & Antons, D. (2024). Artificial intelligence in acute care: A systematic review, conceptual synthesis, and research agenda. *Technological Forecasting and Social Change*, 206, 123568. <https://doi.org/10.1016/j.techfore.2024.123568>
-

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2021 Rasit Dinc