

What AI Apps Can Monitor My Health? A Professional and Academic Overview

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: November 9, 2023 | AI Diagnostics

DOI: [10.5281/zenodo.17997317](https://doi.org/10.5281/zenodo.17997317)

Abstract

What AI Apps Can Monitor My Health? A Professional and Academic Overview The integration of Artificial Intelligence (AI) into mobile health (mHealth) ap...

What AI Apps Can Monitor My Health? A Professional and Academic Overview

The integration of Artificial Intelligence (AI) into mobile health (mHealth) applications and wearable technology represents a paradigm shift in personal health monitoring. Moving beyond simple data logging, AI-powered apps are now capable of real-time diagnostics, personalized interventions, and predictive analytics, transforming the way both professionals and the general public approach well-being and disease management. The central question for many is no longer *if* AI can monitor health, but *how* reliably and effectively it does so.

The Spectrum of AI in Health Monitoring

AI's role in health monitoring can be broadly categorized into two main areas: symptom assessment and continuous physiological monitoring.

1. AI-Powered Symptom Checkers and Diagnostic Assistants

These applications use Natural Language Processing (NLP) and machine learning algorithms to analyze user-reported symptoms and provide potential diagnoses or recommendations for care. They serve as a crucial first-line tool for triage, helping users decide whether to seek professional medical attention.

Examples and Academic Validation: Leading symptom-checker apps like **ADA** and **Mediktor** have been the subject of academic scrutiny to evaluate their usability and diagnostic accuracy [1]. Research comparing these tools has shown that while they offer high usability, critical gaps remain, particularly in the area of **Explainable AI (XAI)** [1]. For instance, a study evaluating ADA, Mediktor, and WebMD found that all three displayed

deficiencies in providing transparent justifications or confidence scores for their AI-generated recommendations. This lack of transparency can undermine user trust and safety, highlighting the need for developers to embed XAI cues like input validation and clear decision rationales to enhance real-world adoption [1].

2. Continuous Monitoring via Wearable Sensors

The most significant advancement in AI health monitoring comes from its application to data streams generated by wearable sensors. These devices—ranging from smartwatches to specialized patches—collect vast amounts of physiological data, including heart rate variability (HRV), sleep patterns, glucose levels, and gait analysis.

Key Applications and Technologies: AI algorithms, particularly machine learning methods such as federated learning and edge-AI, are essential for processing these complex physiological signals in real-time [2]. This enables: **Early Detection:** *AI models can identify subtle deviations from a user's baseline, providing early warnings for conditions like atrial fibrillation or the onset of infectious diseases.* **Personalized Interventions:** By analyzing historical data, AI can tailor health recommendations, such as adjusting medication reminders or suggesting personalized exercise routines. **Predictive Analytics:** *The creation of digital twins—virtual models of a patient's health—allows AI to predict future health risks, shifting the focus from reactive treatment to proactive disease management [2].*

Regulatory Oversight and Clinical Integration

*For an AI app to be considered a reliable health monitoring tool, it must often meet stringent regulatory standards. The U.S. Food and Drug Administration (FDA) maintains a list of authorized **AI-Enabled Medical Devices** [3]. These devices, which include software for analyzing medical images, diagnostics, and patient data, have undergone a focused review of their safety and effectiveness.*

The FDA's authorization of these devices, such as those used for cardiac amyloid detection or lung health analysis, signifies a crucial distinction between consumer wellness apps and clinically validated medical tools [3]. This regulatory framework is vital for ensuring that AI applications used for monitoring health are not only innovative but also safe and effective for patient care.

The Future of AI in Health: Precision and Trust

*The trajectory of AI in health monitoring is moving toward greater precision and integration into clinical workflows. However, the challenge of **data heterogeneity** (device variability) and **privacy concerns** remain significant hurdles [2]. The development of adaptive AI models that can generalize across diverse populations is essential for equitable healthcare.*

For professionals and the public seeking to navigate this rapidly evolving landscape, understanding the underlying technology and the academic validation of these tools is paramount. The shift toward patient-centric, data-

driven care requires a commitment to transparency and rigorous evaluation. For more in-depth analysis on this topic, the resources at [www.rasitdinc.com] (<https://www.rasitdinc.com>) provide expert commentary and cutting-edge insights into the future of digital health and AI.

References

[1] Alduhailan, H. W., Alshamari, M. A., & Wahsheh, H. A. M. (2025). *A Comprehensive Comparison and Evaluation of AI-Powered Healthcare Mobile Applications' Usability.* Healthcare, 13(15), 1829. [<https://pmc.ncbi.nlm.nih.gov/articles/PMC12345953/>] (<https://pmc.ncbi.nlm.nih.gov/articles/PMC12345953/>)

[2] Soumma, S. B., et al. (2025). *AI-powered wearable sensors for health monitoring and clinical decision making.* Current Opinion in Biomedical Engineering*. [<https://www.sciencedirect.com/science/article/abs/pii/S2468451125000534>] (<https://www.sciencedirect.com/science/article/abs/pii/S2468451125000534>)

[3] U.S. Food and Drug Administration. (2025). *Artificial Intelligence-Enabled Medical Devices.* [<https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-enabled-medical-devices>] (<https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-enabled-medical-devices>)

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2023 Rasit Dinc