

The Future of Precision Medicine: Can You Access AI Genetic Testing Interpretation?

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: September 23, 2023 | AI Diagnostics

DOI: [10.5281/zenodo.17997363](https://doi.org/10.5281/zenodo.17997363)

Abstract

The integration of Artificial Intelligence AI into genetic testing interpretation marks a profound shift in personalized medicine. Once a domain exclusive to...

The integration of Artificial Intelligence (AI) into genetic testing interpretation marks a profound shift in personalized medicine. Once a domain exclusive to highly specialized clinical geneticists, the process of translating complex genomic data into actionable health insights is rapidly being augmented, and in some cases, democratized by sophisticated AI algorithms. The central question for patients, clinicians, and the general public is no longer *if* AI is involved, but **"Can I access AI genetic testing interpretation?"**

The answer is a nuanced "yes," but with critical caveats regarding the nature of access, the level of clinical validation, and the regulatory landscape.

The Role of AI in Genomic Interpretation

Genetic testing, particularly whole-exome or whole-genome sequencing, generates massive datasets. A single human genome contains millions of variants, and identifying the one or two pathogenic variants responsible for a disease is a monumental task. AI excels here by performing three key functions:

- 1. Variant Prioritization:** AI models are trained on vast databases of known genetic variants (e.g., ClinVar, gnomAD) [2] and scientific literature. They use machine learning to rapidly filter and rank variants based on their predicted pathogenicity, significantly reducing the manual review time for geneticists.
- 2. Phenotype-Genotype Correlation:** By analyzing a patient's clinical symptoms (phenotype) alongside their genetic data (genotype), AI can suggest the most likely causative genes. This is particularly valuable in diagnosing rare diseases, where the connection may not be immediately obvious to a human expert.
- 3. Literature Synthesis:** Generative AI tools, such as those mentioned in recent academic literature (e.g., VarChat [1]), can quickly summarize and link genomic variants to relevant scientific publications, providing clinicians with concise, up-to-date evidence to support their diagnostic conclusions.

Direct-to-Consumer vs. Clinical Access

Access to AI-powered interpretation currently falls into two main categories:

1. Clinical Access (The Gold Standard): In a clinical setting, AI tools are used *by* genetic testing laboratories and healthcare providers, not directly by the patient. These tools, such as Fabric GEM, [3] are often validated as Clinical Decision Support (CDS) systems. The interpretation provided to the patient is a final, expert-reviewed report, where the AI's output is a critical input, but not the final word. This model ensures a high degree of accuracy and clinical utility, as the interpretation is filtered through the expertise of a board-certified geneticist. **2. Direct-to-Consumer (DTC) Access:** Some DTC genetic testing companies offer AI-driven interpretation of raw data files. While this offers the most direct form of access, it is also the most fraught with risk. The interpretations are often for informational purposes only and lack the clinical validation and regulatory oversight of laboratory-based reports. Furthermore, as research from the NIH has shown, [4] some leading AI models can struggle to accurately interpret patient-written descriptions or complex medical scenarios, highlighting the need for human oversight.

The Challenge of Validation and Regulation

The primary barrier to widespread, direct patient access is the need for **eXplainable Artificial Intelligence (XAI)** and robust regulatory frameworks. AI models, especially deep learning networks, can sometimes operate as "black boxes," making it difficult to understand *why* a specific variant was classified as pathogenic or benign. For a medical diagnosis, transparency is paramount. Regulatory bodies are working to establish standards that ensure AI interpretations are:

Accurate: *Consistently matching or exceeding human expert performance.*

Reproducible: *Providing the same result given the same input data.*

Actionable: *Leading to clear clinical management decisions.*

The future of AI in genomics is not about replacing the human expert, but about creating a synergistic loop where AI handles the data volume and complexity, and the human expert provides the necessary clinical judgment and patient context. For more in-depth analysis on this topic, the resources at www.rasitdinc.com provide expert commentary on the ethical and practical implications of digital health technologies, offering valuable insights for both professionals and the general public navigating this rapidly evolving field.

References

[1] F De Paoli et al., "VarChat: the generative AI assistant for the interpretation of genomic variants," *Bioinformatics*, 2024. [2] *Artificial intelligence in clinical genetics / European Journal of Human Genetics*, *Nature*, 2025. [3] FM De La Vega et al., "Artificial intelligence enables comprehensive genome interpretation and diagnosis of rare disease," *Genome Medicine*, 2021. [4] *Leading AI models struggle to identify genetic conditions from patient-written descriptions*, NIH News Releases*, 2024.

Conclusion

While the dream of instant, personalized AI genetic interpretation is closer than ever, direct, unmediated access for the public remains limited by the need for clinical validation and regulatory clarity. For now, the most reliable and clinically sound way to access AI-enhanced genetic interpretation is through a certified healthcare provider or a reputable clinical laboratory. As the technology matures and XAI principles are more widely adopted, we can anticipate a future where AI interpretation tools become more transparent and directly accessible, empowering individuals to take a more active role in their genomic health.

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2023 Rasit Dinc