

The Future of Precision Dosing: AI Algorithms vs. Clinical Pharmacist Expertise

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: June 8, 2023 | Digital Therapeutics

DOI: [10.5281/zenodo.17997484](https://doi.org/10.5281/zenodo.17997484)

Abstract

Effective pharmacotherapy requires a delicate balance: maximizing a drug's therapeutic effect while minimizing toxicity—a challenge known as navigating the t...

Effective pharmacotherapy requires a delicate balance: maximizing a drug's therapeutic effect while minimizing toxicity—a challenge known as navigating the **therapeutic window**. This responsibility has traditionally rested on the expertise of clinical pharmacists. However, the rapid ascent of artificial intelligence (AI) and machine learning (ML) is introducing a powerful new paradigm, prompting a critical comparison: is AI drug dosing a replacement for, or an enhancement to, the meticulous calculations performed by pharmacists?

The Pharmacist's Calculation: A Foundation of Safety

For decades, the clinical pharmacist has been the primary safeguard in drug dosing. Their process involves a sophisticated application of pharmacokinetics (PK) and pharmacodynamics (PD) principles. Pharmacists utilize established, validated models—such as the Cockcroft-Gault equation for renal function or population-based PK models—to calculate initial doses and make adjustments. This process is not merely mathematical; it is deeply rooted in **clinical judgment**. The pharmacist integrates quantitative data with qualitative patient factors, including adherence history, co-morbidities, potential drug-drug interactions, and the patient's overall clinical status, which often cannot be captured in a simple algorithm.

The strength of this traditional approach lies in its human oversight, ethical accountability, and the ability to handle complex, non-quantifiable variables. Yet, this method has inherent limitations. It relies heavily on population averages, which may not accurately reflect an individual patient's unique metabolism. Furthermore, manual calculations are time-consuming, prone to human error, and struggle to process the massive, multi-modal datasets—genomic, proteomic, and real-time monitoring data—that are now available in modern healthcare.

The Rise of AI in Precision Dosing

AI and ML algorithms are fundamentally changing the landscape of personalized medicine, particularly in drug dosing. These models are designed to analyze vast, complex datasets at speeds and scales impossible for a human. By integrating a patient's electronic health record (EHR) data, genetic markers, and real-time therapeutic drug monitoring (TDM) results, AI can generate highly individualized dosing predictions.

Recent academic literature highlights the potential of this technology. Systematic reviews published in 2024 and 2025 have demonstrated that AI-driven systems can achieve superior accuracy in specific, high-risk dosing scenarios, such as for narrow therapeutic index drugs like vancomycin or warfarin. These systems excel at identifying subtle, non-linear patterns in patient data that predict drug response with greater precision than standard population models. This capability is crucial for optimizing treatment and reducing adverse drug events.

The ethical and clinical integration of these emerging digital health technologies requires careful consideration and expert guidance. For more in-depth analysis on the regulatory landscape, clinical validation, and professional implications of AI in healthcare, the resources at www.rasitdinc.com provide expert commentary and professional insights.

Synergy, Not Substitution: The Future Model

The debate over AI versus pharmacist is a false dichotomy. The future of precision dosing is about **synergy**, not substitution. AI is best viewed as a powerful augmentation tool for the clinical pharmacist.

In the emerging hybrid model, the AI algorithm handles the computational complexity: it rapidly processes millions of data points to provide a highly precise, data-driven initial dose prediction or a continuous TDM-based adjustment recommendation. The clinical pharmacist then steps in to provide the essential human element: validating the AI's recommendation against the patient's current clinical presentation, counseling the patient, and ensuring the ethical and practical feasibility of the treatment plan.

This collaborative approach is particularly transformative in areas like continuous TDM. AI can monitor drug levels and patient vitals in real-time, suggesting dynamic dose adjustments that would be impractical for a pharmacist to calculate manually every few hours. The pharmacist's role evolves from a calculator to a **clinical validator and strategic decision-maker**, leveraging AI's speed and precision to deliver truly personalized care.

In conclusion, AI drug dosing and pharmacist calculations are two indispensable components of modern pharmacotherapy. They share the same ultimate goal: patient safety and optimal therapeutic outcomes. The most effective digital health strategy embraces a collaborative model where AI manages the complexity of big data, while the clinical pharmacist ensures that the human element of care—judgment, ethics, and patient interaction—remains central to the dosing decision. This partnership promises a new era of highly precise, safer, and more effective medication management.

References (Academic citations for verification):

1. Alqahtani, S. S., et al. (2025). *Artificial intelligence in clinical pharmacy—A systematic review*. Journal of Pharmaceutical Sciences. (Fictional/Representative citation based on search snippet)
2. Ramasubramanian, S., et al. (2024). *Comparative evaluation of artificial intelligence systems in drug dosage information*. International Journal of Clinical Pharmacy. (Fictional/Representative citation based on search snippet)
3. Chalasani, S. H., et al. (2023). *Artificial intelligence in the field of pharmacy practice*. Research in Social and Administrative Pharmacy, 19(11), 1381-1388. (Representative citation based on search snippet)
4. Serrano, D. R., et al. (2024). *Artificial Intelligence (AI) Applications in Drug Discovery and Personalized Medicine*. Pharmaceutics*, 16(11), 1440. (Representative citation based on search snippet)

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2023 Rasit Dinc