

The Evolution of Smartwatches in Continuous Health Monitoring: From Fitness Tracker to Clinical Tool

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: October 21, 2025 | AI Diagnostics

DOI: 10.5281/zenodo.17996509

Abstract

Meta Description: Explore the academic and technological evolution of smartwatches in continuous health monitoring. Learn about the shift from basic fitness ...

Meta Description: Explore the academic and technological evolution of smartwatches in continuous health monitoring. Learn about the shift from basic fitness tracking to advanced, clinically relevant features like ECG and SpO2, and the future of AI-driven diagnostics on the wrist.

Introduction: The Wrist as a New Frontier for Digital Health

The modern smartwatch has undergone a profound transformation, evolving from a simple accessory into a sophisticated, multi-sensor platform for **continuous health monitoring (CHM)**. This evolution represents a paradigm shift in digital health, moving the point of care from the clinic to the individual's wrist. For professionals in digital health and artificial intelligence (AI), the smartwatch is a critical intersection of consumer technology, medical-grade sensing, and data-driven diagnostics.

The core value proposition is the ability to gather health data that were previously unavailable, costly, or difficult to obtain in a continuous, real-world setting [1](<https://pmc.ncbi.nlm.nih.gov/articles/PMC11549588/>). This constant stream of physiological data, analyzed by powerful algorithms, offers unprecedented opportunities for early detection, personalized intervention, and proactive health management.

Key Milestones in the Evolution of Continuous Health Monitoring

The health-focused smartwatch's journey is segmented by the introduction of clinically significant sensor technologies:

| Era | Key Feature Introduced | Sensor Technology | Clinical Significance | | :-
-- | --- | --- | --- | | **Early (2010s)** | Step Counting, Basic Heart Rate | Accelerometer, Optical (PPG) | Activity tracking, resting heart rate trends. | |
Mid (2018-Present) | Electrocardiogram (ECG), SpO2 | Electrical (ECG), Reflectance Photoplethysmography (PPG) | Detection of Atrial Fibrillation (AFib), monitoring of blood oxygen saturation (critical for sleep apnea). | |
Near Future | Blood Pressure, Non-Invasive Glucose | Advanced Sensor Arrays | Management of chronic conditions like hypertension and diabetes. |

The introduction of the **Electrocardiogram (ECG)** on the wrist marked a significant turning point. This feature, which received regulatory clearance (e.g., FDA approval) in key markets, allowed smartwatches to transition from "wellness" devices to tools capable of detecting serious heart rhythm abnormalities, such as Atrial Fibrillation (AFib) [2](<https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-first-mobile-medical-app>-

record-ecg-directly-apple-watch). Similarly, the integration of **SpO2 (blood oxygen saturation)** monitoring, utilizing advanced reflectance photoplethysmography (PPG), has enhanced the device's utility for sleep tracking and identifying potential respiratory issues [3] (<https://www.nature.com/articles/s41598-024-84459-0>).

The Convergence of Sensing and Artificial Intelligence

The true power of the modern smartwatch lies not just in its sensors, but in the **AI and machine learning (ML) algorithms** that interpret the vast amounts of data they generate, transforming raw sensor signals into actionable health insights.

For instance, PPG-based smartwatches, which measure changes in blood volume under the skin, rely on sophisticated ML models to filter out motion artifacts and accurately detect subtle irregularities in heart rhythm. Studies have shown that these PPG-based systems can exhibit diagnostic accuracy comparable to single-lead ECGs in detecting AFib, with some achieving accuracy rates exceeding 96% [4] (<https://www.jacc.org/doi/10.1016/j.jacadv.2025.102133>), [5] (https://www.researchgate.net/publication/389982130_Comparison_of_diagnostic_accuracy_of_electrocardiogram-based_vs_photoplethysmography-based_smartwatches_for_atrial_fibrillation_detection_A_Systematic_Review_and_Meta-Analysis). This high level of performance is a direct result of AI-driven signal processing and pattern recognition.

Furthermore, AI is crucial for establishing **Personalized Baselines** by tracking continuous vital signs to detect subtle deviations signaling illness (e.g., fever, infection). It also enables accurate **Sleep Staging** based on heart rate variability and movement, and facilitates **Predictive Modeling** by analyzing multi-modal data (activity, sleep, heart rate) to forecast health risks.

Accuracy, Reliability, and the Regulatory Landscape

While the technological advancements are impressive, the professional community must remain focused on the **accuracy and reliability** of these consumer-grade devices. The line between a "wellness" tool and a "medical device" is regulatory, and users must understand the distinction.

For features marketed as medical devices (e.g., the ECG function), manufacturers must obtain regulatory approval from bodies like the U.S. Food and Drug Administration (FDA) or secure CE marking in Europe. This process ensures the features meet necessary standards for clinical use [6] (<https://www.fda.gov/medical-devices/overview-device-regulation/device-approvals-denials-and-clearances>). However, many features are intentionally marketed for "fitness and wellness" to sidestep this lengthy approval process, even if they have significant health relevance.

Academic research continues to validate the performance of these devices. For example, studies have confirmed the high reliability of certain smartwatches in determining heart rate and oxygen saturation against conventional medical devices [7] (<https://www.nature.com/articles/s41598-024-84459-0>). However, caution remains paramount, particularly for emerging features. The FDA has issued warnings against using smartwatches or smart rings to measure **blood glucose levels**, as these non-invasive methods are not yet authorized and could lead to inaccurate readings and dangerous medical decisions [8] (<https://www.fda.gov/medical-devices/safety-communications/do-not-use-smartwatches-or-smart-rings-measure-blood-glucose-levels-fda-safety-communication>).

The Future: Towards a Seamless Health Ecosystem

The next generation of smartwatches promises to close the gap between consumer technology and clinical medicine, with anticipated features including non-invasive blood pressure monitoring and more robust, non-

invasive glucose sensing.

Ultimately, the evolution of the smartwatch is driving a shift toward a seamless, continuous health ecosystem. As AI models become more sophisticated and sensor technology improves, the smartwatch will cement its role as an indispensable tool for both the healthy individual and the patient requiring remote, continuous clinical oversight. This convergence promises a future where healthcare is not episodic and reactive, but continuous, predictive, and deeply personalized.

*Disclaimer:** This blog post is for informational and scientific purposes only and is not intended as a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of a qualified health provider with any questions you may have regarding a medical condition.

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2025 Rasit Dinc