

The Digital Fortress: Navigating Cybersecurity Challenges in Connected Medical Devices

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: May 6, 2025 | Telemedicine

DOI: [10.5281/zenodo.17996704](https://doi.org/10.5281/zenodo.17996704)

Abstract

The rapid integration of Artificial Intelligence AI and the Internet of Medical Things IoMT has revolutionized healthcare, promising unprecedented efficiency...

The rapid integration of Artificial Intelligence (AI) and the Internet of Medical Things (IoMT) has revolutionized healthcare, promising unprecedented efficiency and personalized patient care. Connected medical devices (CMDs), from smart infusion pumps to remote patient monitoring systems, are the backbone of this digital transformation. However, this connectivity introduces a critical and complex vulnerability: **cybersecurity challenges in connected medical devices**. For professionals in digital health and AI, understanding and mitigating these risks is paramount to safeguarding patient safety and maintaining the integrity of healthcare systems.

The Triad of Modern Cybersecurity Challenges

The security landscape for CMDs is fraught with challenges, often stemming from the unique environment of healthcare and the devices themselves. Recent industry reports highlight three primary hurdles faced by medical device manufacturers (MDMs) and healthcare providers [1]:

- 1. Asset Management and Software Bill of Materials (SBOM):** The sheer volume and diversity of CMDs, coupled with their long operational lifecycles, make comprehensive asset management a significant challenge. Each device contains a complex array of software components, often with multiple versions. Effective **Software Bill of Materials (SBOM)** management is essential for accurate tracking and vulnerability patching, a task made difficult by the expanding software footprint in these devices.
- 2. Integrating Security into Research and Development (R&D):** A persistent challenge is the integration of security considerations early in the product development lifecycle. The "shift-left" approach, which embeds security into R&D processes, is crucial. However, achieving strong collaboration between security and R&D teams remains a hurdle, with many MDMs struggling to prioritize security without sacrificing innovation and productivity [1].
- 3. Operational Efficiency vs. Security Complexity:** As security processes

become more stringent and complex, healthcare organizations face the difficult task of maintaining operational efficiency. Time and resource constraints, coupled with the inherent complexity of integrated systems, are frequently cited as the biggest barriers to implementing robust cybersecurity measures [2].

The Critical Impact of Cyberattacks on Patient Care

The consequences of a successful cyberattack on CMDs extend far beyond financial loss and data breaches; they directly compromise patient care and safety. Academic studies have demonstrated a clear link between security incidents and adverse clinical outcomes.

A cyberattack can disrupt critical hospital processes, leading to a measurable increase in the **Length of Stay (LOS)** for patients in the Emergency Department (ED) [2]. Furthermore, attacks can force a reduction in the number of patients treated daily, resulting in significant financial losses for hospitals and a loss of patient confidence in the reliability of the healthcare provider. The disruption of essential services, such as ambulance diversions due to compromised ED capacity, underscores the life-critical nature of these security failures [2].

Impact Area	Description	Source	Notes
Clinical Outcomes	Increased Length of Stay (LOS) in Emergency Departments (ED) and potential for delayed treatment.	[2]	
Operational Capacity	Reduction in the number of patients treated daily, leading to financial losses and operational strain.	[2]	
Data Integrity	Loss of sensitive patient data, resulting in regulatory fines and erosion of patient trust.	[2]	
Implementation Barrier	Time, resource constraints, and system complexity hinder the implementation of robust security measures.	[2]	

The Evolving Regulatory Landscape

Recognizing the escalating threat, regulatory bodies are intensifying their focus on CMD cybersecurity. In the United States, the Food and Drug Administration (FDA) has issued comprehensive guidance, including the final guidance **"Cybersecurity in Medical Devices: Quality System Considerations and Content of Premarket Submissions"** [3]. This guidance provides recommendations on cybersecurity considerations and the information that must be included in premarket submissions for new devices. The regulatory push, driven by legislation like the Omnibus Act, signals a clear shift toward mandatory security-by-design principles, forcing MDMs to adopt a proactive, lifecycle-based approach to security.

Conclusion: Securing the Future of Digital Health

The future of digital health hinges on our ability to secure the connected medical devices that power it. For professionals in AI and digital health, the focus must shift from reactive patching to proactive, integrated security. This requires a commitment to **security-by-design**, robust **asset and SBOM management**, and continuous collaboration between R&D and security teams. As the regulatory environment matures, those who embrace these

challenges will not only ensure compliance but, more importantly, will safeguard the trust and well-being of the patients they serve.

**

References

- [1] *Cybellum*. The State of Medical Device Security in 2024. <https://cybellum.com/blog/the-state-of-medical-device-security-in-2024-challenges-trends-and-ownership-shifts/>
- [2] Angler, Y., Fless, S., Grass, E., & Goetz, O. (2025). *Assessing the impact of technology partners on the level of cyberattack damage in hospitals*. *Health Policy and Technology*, 14(1), 100955. [<https://www.sciencedirect.com/science/article/pii/S2211883724001187>]
(<https://www.sciencedirect.com/science/article/pii/S2211883724001187>)
- [3] U.S. Food and Drug Administration (FDA). Cybersecurity in Medical Devices: Quality System Considerations and Content of Premarket Submissions*. <https://www.fda.gov/medical-devices/digital-health-center-excellence/cybersecurity>

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2025 Rasit Dinc