

The Algorithmic Revolution: Machine Learning in Cancer Genomics and Personalized Immunotherapy

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: September 7, 2025 | Digital Therapeutics

DOI: [10.5281/zenodo.17996561](https://doi.org/10.5281/zenodo.17996561)

Abstract

The field of oncology is at a critical juncture. Despite remarkable advances, particularly with the advent of immunotherapy, the inherent heterogeneity of ca...

The field of oncology is at a critical juncture. Despite remarkable advances, particularly with the advent of immunotherapy, the inherent **heterogeneity of cancer** remains a formidable challenge. Traditional methods for selecting treatment often fall short, leading to suboptimal outcomes for many patients. In this landscape, **Machine Learning (ML)** and **Artificial Intelligence (AI)** are emerging as indispensable tools, transforming how we interpret complex biological data to deliver truly **Personalized Cancer Treatment**. By integrating massive datasets from cancer genomics and multi-omics studies, AI is poised to revolutionize both biomarker discovery and the critical prediction of immunotherapy response [1].

The Genomic Challenge and ML's Role in Multi-Omics

Cancer genomics generates data at an unprecedented scale. A single tumor sample can yield terabytes of high-dimensional data spanning mutations, gene expression (transcriptomics), protein profiles (proteomics), and epigenetic modifications. This **multi-omics** data deluge is far too complex for human analysis alone.

This is where ML algorithms excel. Techniques such as **Deep Learning in Oncology**, Random Forests, and Support Vector Machines are uniquely capable of identifying subtle, non-linear patterns within these vast datasets. Their application is fundamentally changing **Biomarker Discovery**, moving beyond single-gene markers to complex, multi-dimensional signatures [4]. Researchers are now leveraging ML to identify novel predictive biomarkers from genomic, transcriptomic, and proteomic data, which are crucial for understanding the mechanisms of drug resistance and sensitivity [3] [5]. For instance, ML models can pinpoint key genomic features that correlate with a patient's likelihood of responding to Immune Checkpoint Inhibitors (ICIs).

AI Immunotherapy Prediction: Ensuring Precision

Immunotherapy, particularly the use of ICIs, has been a game-changer, but its

efficacy is limited to a subset of patients. The critical need in clinical practice is to accurately predict which patients will benefit, thereby reducing unnecessary toxicity, managing costs, and ensuring effective care is delivered faster [7]. This is arguably the most impactful application of **AI Immunotherapy Prediction**.

The development of sophisticated **Deep Learning** models is central to this effort. These models are trained on multi-modal data, combining genomic information with clinical records, pathology images, and even radiomics data from scans [10] [11]. By analyzing the intricate interplay between the tumor, the tumor microenvironment, and the host immune system, ML can forecast treatment outcomes with increasing accuracy [9].

For example, recent studies have demonstrated the validity of deep learning models in predicting response to ICI treatment in patients with metastatic melanoma, showcasing the generalizability and clinical utility of these algorithmic tools [6] [11]. This capability allows clinicians to stratify patients more effectively, reserving powerful but potentially toxic treatments for those most likely to benefit.

Beyond Prediction: Designing the Next Generation of Immunotherapies

The utility of **Machine Learning Cancer Genomics** extends beyond prediction and patient stratification; it is now actively involved in the design and engineering of new therapeutic agents [8].

Two key areas of innovation include:

1. **Neoantigen Identification:** Neoantigens are unique protein fragments produced by tumor-specific mutations, making them ideal targets for T-cell-mediated immune responses. AI algorithms are significantly accelerating the process of identifying these novel neoantigens, which is a crucial step in developing personalized cancer vaccines and adoptive T-cell therapies [8].
2. **Antibody Design:** ML is being employed to design more effective and specific therapeutic antibodies. By simulating and predicting the binding affinity and stability of potential drug candidates, AI slashes the time and cost associated with traditional drug discovery pipelines [8].

Conclusion

The integration of **Machine Learning** into **Cancer Genomics** and **Immunotherapy** is not merely an incremental improvement—it is an **algorithmic revolution**. By harnessing the complexity of multi-omics data, AI is providing the necessary computational power to unlock the promise of precision oncology. As these models continue to mature and integrate seamlessly into clinical workflows, they will accelerate the shift toward a future where every cancer patient receives a truly personalized, optimized treatment plan, guided by the insights of artificial intelligence [1] [2].

References

[1] R Bhushan (2025). The role of artificial intelligence in predicting cancer ... [https://www.sciencedirect.com/science/article/pii/S277290602500055X] [2] Z Xu (2021). Applying artificial intelligence for cancer immunotherapy. [https://pmc.ncbi.nlm.nih.gov/articles/PMC8642413/] [3] Frontiers in Immunology (2025). Applications of artificial intelligence in cancer immunotherapy. [https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2025.1676112/full] [4] Y Li et al. (2024). Informing immunotherapy with multi-omics driven machine learning. [https://www.nature.com/articles/s41746-024-01043-6] [5] A Prelaj et al. (2024). Artificial intelligence for predictive biomarker discovery in ... [https://www.annalsofoncology.org/article/S0923-7534(23)04331-4/fulltext] [6] M Rakaae et al. (2025). Deep Learning Model for Predicting Immunotherapy ... [https://jamanetwork.com/journals/jamaoncology/fullarticle/2828578] [7] RSNA News (2025). Machine Learning Predicts Immunotherapy Response in ... [https://www.rsna.org/news/2025/june/ml-predicts-immunotherapy-response] [8] L D'Orsi et al. (2024). Recent Advances in Artificial Intelligence to Improve ... [https://pmc.ncbi.nlm.nih.gov/articles/PMC11546512/] [9] JH Kong et al. (2022). Network-based machine learning approach to predict immunotherapy response in cancer patients. [https://www.nature.com/articles/s41467-022-31535-6] [10] X Wang et al. (2023). Cancer immunotherapy response prediction from multi ... [https://www.thegreenjournal.com/article/S0167-8140(23)00331-6/fulltext] [11] AACR Journals (2025). Artificial Intelligence Algorithm Predicts Response to Immune ... [https://aacrjournals.org/clincancerres/article/31/16/3526/763981/Artificial-Intelligence-Algorithm-Predicts]
