

The Algorithmic Imperative: Should AI Be Used in Genetic Screening?

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: January 18, 2022 | Medical Imaging AI

DOI: [10.5281/zenodo.17998056](https://doi.org/10.5281/zenodo.17998056)

Abstract

The Algorithmic Imperative: Should AI Be Used in Genetic Screening? The convergence of Artificial Intelligence (AI) and genomics represents one of the m...

The Algorithmic Imperative: Should AI Be Used in Genetic Screening?

The convergence of Artificial Intelligence (AI) and genomics represents one of the most transformative shifts in modern medicine. As genetic screening moves from a specialized, laborious process to a high-throughput, data-intensive discipline, the question is no longer *if* AI will be used, but *how* it should be integrated to maximize benefit while mitigating profound ethical and social risks. For professionals and the public alike, understanding this algorithmic imperative is crucial for navigating the future of digital health.

The Promise of Precision: AI in Genetic Data Analysis

Genetic screening, which involves analyzing an individual's DNA to identify disease-related genetic variations, generates massive datasets. A single human genome sequence can contain terabytes of information. Traditional methods of analysis struggle to keep pace with this volume and complexity, often leading to long diagnostic delays and missed opportunities for early intervention. This is where AI excels [1].

AI, particularly through **Machine Learning (ML)** and **Deep Learning (DL)** models, offers unparalleled capabilities in pattern recognition within complex genomic data. These systems can:

1. **Accelerate Variant Interpretation:** AI algorithms can rapidly filter through millions of genetic variants, prioritizing those most likely to be pathogenic. This is especially critical for diagnosing rare diseases, where human experts may lack sufficient reference cases [2].
2. **Improve Predictive Screening:** By integrating genomic data with clinical records, lifestyle factors, and imaging data, AI can build more accurate polygenic risk scores (PRS), offering a more nuanced prediction of an individual's lifetime risk for

common, complex diseases like heart disease or diabetes [3]. 3. **Enhance Prenatal and Preimplantation Screening:** AI models are being developed to analyze non-invasive prenatal screening (NIPS) data and preimplantation genetic testing (PGT) results with greater accuracy, potentially reducing the need for more invasive follow-up procedures [4].

The efficiency and scale offered by AI promise to democratize access to advanced genetic screening, making it faster and more affordable.

The Ethical and Social Crossroads

Despite the technological promise, the application of AI in genetic screening is fraught with ethical, legal, and social implications (ELSI). The core debate centers on balancing innovation with protection of individual rights and societal equity.

| Ethical Challenge | Description | Potential Consequence | | :--- | :--- | :--- | | **Algorithmic Bias** | AI models trained on non-diverse datasets (e.g., predominantly European ancestry) perform poorly on other populations. | Disparities in diagnosis and risk prediction, exacerbating health inequities [5]. | | **Data Privacy & Security** | Genomic data is uniquely identifiable and permanent. AI requires vast, interconnected datasets, increasing the risk of breaches. | Genetic discrimination by insurers or employers; loss of personal autonomy. | | **Informed Consent** | The complexity of AI-driven analysis makes it difficult for patients to understand what they are consenting to, especially regarding secondary findings. | Consent may not be truly "informed," leading to psychological distress or misuse of genetic information [6]. | | **Clinical Responsibility** | Determining who is accountable when an AI model makes an incorrect diagnosis—the clinician, the developer, or the algorithm itself. | Erosion of trust in medical professionals and the diagnostic process. |

These challenges are not merely theoretical; they demand immediate and proactive governance. The rapid pace of AI development often outstrips the capacity of regulatory bodies to establish clear guidelines, creating a regulatory vacuum.

The Path Forward: Regulation, Transparency, and Education

To responsibly harness the power of AI in genetic screening, a multi-pronged approach is necessary:

Mandatory Data Diversity: *Regulatory bodies must mandate that AI models used in clinical settings are trained and validated on globally diverse genomic datasets to ensure equitable performance across all populations.* **Explainable AI (XAI):** The "black box" nature of deep learning models must be addressed. Clinicians need **interpretable** results that explain *why* a specific genetic variant was flagged, allowing for clinical oversight and validation. **Robust Governance:** *Clear legal frameworks are needed to define data ownership, prevent genetic discrimination, and establish liability in cases of algorithmic error.*

The integration of AI into genetic screening is an ongoing, complex

conversation that requires input from clinicians, ethicists, policymakers, and the public. For more in-depth analysis on the intersection of digital health, AI governance, and ethical frameworks, the resources and expert commentary at www.rasitdinc.com provide essential professional insight. Ultimately, the answer to whether AI should be used is a resounding yes, but only under a framework of rigorous ethical oversight and unwavering commitment to health equity.

*

References

- [1] *European Journal of Human Genetics*. Artificial intelligence in clinical genetics. [https://www.nature.com/articles/s41431-024-01782-w] (https://www.nature.com/articles/s41431-024-01782-w) [2] PubMed Central. Artificial Intelligence in Genetics. [https://pmc.ncbi.nlm.nih.gov/articles/PMC10856672/] (https://pmc.ncbi.nlm.nih.gov/articles/PMC10856672/) [3] ScienceDirect. The transformative role of Artificial Intelligence in genomics. [https://www.sciencedirect.com/science/article/abs/pii/S2452014425001876] (https://www.sciencedirect.com/science/article/abs/pii/S2452014425001876) [4] *Journal of Allergy and Clinical Immunology*. Current perspectives and challenges of using artificial intelligence in the diagnosis of inborn errors of immunity. [https://www.jacionline.org/article/S0091-6749(25)00691-8/fulltext] (https://www.jacionline.org/article/S0091-6749(25)00691-8/fulltext) [5] *The Hindu*. The various challenges associated with AI-driven genetic testing. [https://www.thehindu.com/sci-tech/technology/the-various-challenges-associated-with-ai-driven-genetic-testing/article69172416.ece] (https://www.thehindu.com/sci-tech/technology/the-various-challenges-associated-with-ai-driven-genetic-testing/article69172416.ece) [6] *Nuffield Council on Bioethics*. The application of AI to genomics raises 'urgent' ethical questions, early findings suggest*. [https://www.nuffieldbioethics.org/news-blog/the-application-of-ai-to-genomics-raises-urgent-ethical-questions-early-findings-suggest/] (https://www.nuffieldbioethics.org/news-blog/the-application-of-ai-to-genomics-raises-urgent-ethical-questions-early-findings-suggest/)