

The AI Revolution in Patient Care: Can Artificial Intelligence Track Medication Adherence?

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: October 10, 2023 | Digital Therapeutics

DOI: [10.5281/zenodo.17997347](https://doi.org/10.5281/zenodo.17997347)

Abstract

The AI Revolution in Patient Care: Can Artificial Intelligence Track Medication Adherence? Medication non-adherence—the failure to take medications as p...

The AI Revolution in Patient Care: Can Artificial Intelligence Track Medication Adherence?

Medication non-adherence—the failure to take medications as prescribed—is a global public health crisis. It is a silent epidemic that contributes to approximately 125,000 deaths and 10% of hospitalizations annually in the United States alone, costing the healthcare system hundreds of billions of dollars. For patients managing chronic non-communicable diseases (NCDs), consistent adherence is the bedrock of effective treatment. The question is no longer *if* we can improve adherence, but *how*. The answer, increasingly, lies in the transformative power of Artificial Intelligence (AI).

Yes, AI can be used to track medication adherence, and it is rapidly becoming one of the most promising digital health interventions.

AI-driven solutions are moving beyond simple reminder apps to offer sophisticated, real-time monitoring and personalized interventions. These technologies leverage machine learning and computer vision to address the core challenges of non-adherence: accurate measurement and timely, tailored support.

The Mechanisms: How AI is Monitoring Adherence

The shift from traditional, often inaccurate methods like pill counts and self-reporting to objective, AI-powered tracking is a paradigm change in patient care. Several key AI technologies are at the forefront of this revolution:

1. Computer Vision and Deep Learning

One of the most direct and objective methods involves using a patient's

smartphone camera in conjunction with **computer vision** algorithms. In studies involving stroke patients and those with schizophrenia, AI applications have been developed to visually confirm three critical steps: the patient's identity (via facial recognition), the correct medication, and the confirmed act of ingestion [1, 2]. These systems utilize neural networks to analyze video or image data, providing a level of certainty previously only achievable through directly observed therapy (DOT). Early clinical trials have demonstrated significant improvements in adherence rates, highlighting the potential for these tools to become a gold standard for objective adherence measurement.

2. Machine Learning and Predictive Analytics

Beyond real-time tracking, AI excels at identifying *who* is at risk of non-adherence and *why*. **Machine learning (ML)** models are trained on vast datasets, including electronic health records (EHRs), prescription claims, patient demographics, and patient-reported outcomes. By analyzing these complex variables, ML can: **Predict Non-Adherence:** *Identify patients likely to become non-adherent before it happens, allowing for proactive intervention.* **Identify Key Risk Factors:** Pinpoint the most influential factors (e.g., cost, side effects, complexity of regimen) for individual patients. **Optimize Interventions:** *Determine which type of support (e.g., text message, phone call, educational material) is most likely to be effective for a given patient profile.*

This predictive capability transforms adherence management from a reactive process into a preventative one.

3. Conversational AI and Personalized Support

*AI is also being deployed to enhance patient-provider communication and deliver personalized support. **Conversational AI** (chatbots) and automated systems are used to send adaptive, context-aware reminders and educational messages. Unlike static text messages, these systems can engage in a dialogue, answer patient questions about side effects, and adapt the communication style based on the patient's responses and adherence history [3]. This personalized approach fosters patient empowerment and has been shown to significantly improve compliance with treatment plans.*

Benefits and Challenges of AI-Driven Adherence

The benefits of AI in this domain are substantial, leading to better patient outcomes, reduced healthcare costs, and more efficient resource allocation. However, the implementation is not without its challenges:

*/ Benefit / Challenge / / :--- / :--- / / **Objective Measurement / Privacy and Data Security** / / Provides verifiable data on ingestion, moving beyond subjective reporting. / Handling sensitive video and health data requires robust security and regulatory compliance (e.g., HIPAA, GDPR). / / **Personalized Intervention / Algorithmic Bias and Equity** / / Tailors support (reminders, education) to individual patient needs and risk profiles. / Models trained on non-diverse populations may perform poorly for certain demographic groups, exacerbating health disparities. / / **Predictive***

Capability / Patient Acceptance and Usability // Identifies high-risk patients proactively, enabling preventative care. // The technology must be user-friendly, especially for older adults or those with low digital literacy. // **Scalability / Integration with Clinical Workflow** // Allows health systems to monitor thousands of patients simultaneously without increasing staff burden. // Seamlessly integrating AI data into existing EHRs and clinical decision-making processes remains complex. /

For more in-depth analysis on the ethical and technical considerations of deploying AI in clinical settings, the resources at [\[www.rasitdinc.com\]](http://www.rasitdinc.com) (<https://www.rasitdinc.com>) provide expert commentary.

The Future of Adherence: A Hybrid Approach

The trajectory of digital health suggests that AI will not replace human care but will augment it. The future of medication adherence tracking will likely involve a hybrid model where AI handles the continuous, objective monitoring and data analysis, freeing up clinicians to focus on high-touch, personalized patient engagement.

As regulatory bodies like the FDA continue to approve AI/ML-based medical devices, and as research moves from small pilot studies to large-scale, real-world deployments, the evidence base for AI's efficacy in medication adherence will only strengthen. The question of "Can I use AI?" has been answered with a resounding "Yes." The next phase is determining how to scale these solutions to ensure equitable access and maximum impact for all patients in need.

Academic References*

[1] Labovitz, D. L., et al. (2020). An Artificial Intelligence Smartphone Application for Monitoring Medication Adherence in Stroke Patients. *Stroke*, 51(10), 3125-3128. [2] Bain, E. E., et al. (2021). Real-time monitoring of medication adherence using a smartphone-based artificial intelligence platform in a phase II clinical trial. *Contemporary Clinical Trials Communications*, 24, 100862. [3] Brar Prayaga, R., et al. (2021). Assessing an SMS-based refill reminder solution using conversational AI in older patients with non-communicable diseases. *Frontiers in Digital Health*, 3, 669869. [4] Bohlmann, A., et al. (2021). Machine Learning and Medication Adherence: Scoping Review. *JMIR Medical Informatics*, 9(8), e29911. [5] Sekandi, J. N., et al. (2023). Application of Artificial Intelligence to the Monitoring of Medication Adherence: A Pilot Study. *JMIR AI**, 2(1), e40167.