

The AI-Powered Revolution: Wearable Biosensors for Real-Time Stress and Mental Health Tracking

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: October 11, 2025 | AI Diagnostics

DOI: [10.5281/zenodo.17996523](https://doi.org/10.5281/zenodo.17996523)

Abstract

Meta Description: Explore how wearable biosensors and AI are transforming mental health monitoring with real-time stress tracking using physiological signals...

Meta Description: Explore how wearable biosensors and AI are transforming mental health monitoring with real-time stress tracking using physiological signals like HRV and EDA. A professional and academic deep dive for digital health experts.

Introduction: The Unmet Need in Mental Healthcare

The global burden of mental health disorders, including depression, anxiety, and chronic stress, is staggering, with anticipated expenditures exceeding \$16 trillion by 2030 [1]. Despite this profound need, mental healthcare often lags behind physical health in terms of continuous, objective monitoring. Traditional diagnostic methods rely heavily on subjective self-reporting and episodic clinical assessments, which can miss the subtle, real-time fluctuations indicative of a developing mental health crisis or chronic stress [2].

A paradigm shift is underway, driven by the convergence of **wearable biosensors** and **Artificial Intelligence (AI)**. This fusion offers a pathway to remote, longitudinal, and objective quantitative benchmarks for mental well-being, moving monitoring from the clinic to the context of daily life. The target audience for this technology—professionals in digital health and AI—recognizes its potential to revolutionize proactive and personalized mental health interventions.

The Science of Stress: Physiological Signals as Biomarkers

Wearable biosensors, miniaturized and integrated into smartwatches, rings, and patches, are capable of continuously capturing a wealth of physiological data. These signals serve as objective biomarkers for the body's stress response, providing a window into the state of the Autonomic Nervous System (ANS).

Key physiological signals for **real-time stress tracking** include:

Signal Biosensor Type Relevance to Stress/Mental Health	:--- :--- :---
Heart Rate Variability (HRV) Photoplethysmography (PPG) or Electrocardiography (ECG) A measure of the variation in time between heartbeats. Low HRV is a well-established indicator of chronic stress, anxiety, and reduced parasympathetic activity [3].	Electrodermal Activity (EDA) Galvanic Skin Response (GSR) Sensor Measures changes in the electrical conductance of the skin, which is directly modulated by sweat gland activity under sympathetic nervous system control. Peaks in EDA correlate with acute emotional arousal and stress [4].
Respiration Rate (RR) Accelerometers, PPG, or Impedance Pneumography Changes in breathing patterns (e.g., shallow, rapid breathing) are a common physical manifestation of anxiety and stress.	Sleep Metrics Accelerometers, PPG Disrupted sleep architecture (e.g., reduced REM or deep sleep) is a hallmark symptom of depression and chronic stress.

The ability to collect these multimodal data streams passively and non-invasively is the foundation of the new mental health monitoring ecosystem.

The Role of Artificial Intelligence in Translating Data to Insight

The sheer volume and complexity of continuous biosensor data necessitate the use of advanced analytical tools. This is where **AI in digital health** becomes indispensable. AI models, particularly Machine Learning (ML) and Deep Learning (DL) algorithms, are the engine that translates raw physiological signals into actionable mental health insights.

ML algorithms are trained on labeled datasets—where physiological data is paired with subjective mood reports or clinical diagnoses—to identify subtle, non-linear patterns that human analysis would miss. For instance, a systematic review of AI models in this domain identified their application in predicting mental health conditions and symptoms, primarily focusing on depression, stress, and anxiety [1].

Key AI Applications:

- 1. Early Detection and Prediction:** AI models can learn an individual's baseline physiological patterns and flag deviations that precede a self-reported or clinically diagnosed adverse mental health event. This shift from reactive treatment to **proactive intervention** is the most significant promise of the technology.
- 2. Personalized Intervention:** By analyzing an individual's unique physiological response to different contexts (inferred from accelerometry, location, and usage metadata), AI can deliver highly personalized, just-in-time interventions, such as guided breathing exercises or cognitive prompts, precisely when a stressor is detected [5].
- 3. Objective Quantification:** AI provides an objective measure of treatment efficacy. Instead of relying solely on a patient's subjective feeling of improvement, clinicians can track objective changes in HRV or sleep quality as a quantitative measure of therapeutic success.

Challenges and the Path Forward

Despite the immense potential, the field faces significant technical and methodological hurdles that must be addressed to ensure clinical utility and widespread adoption.

A major challenge is the **lack of ecological validity** in many research studies, where data is often collected in controlled lab settings rather than the messy, real-world environments where stress occurs [1]. Furthermore, **data heterogeneity** and **small sample sizes** plague the field, making it difficult to train robust, generalizable AI models that perform reliably across diverse populations and devices. Technical issues such as **battery drainage** and the need for continuous sensor wear also impact user compliance and data quality.

The path forward requires a concerted effort to: *Standardize data collection protocols across studies to improve data sharing and model generalizability*. Develop robust, multimodal AI models that fuse physiological data with behavioral and environmental context. *Focus on ethical considerations, including data privacy and the potential for algorithmic bias in mental health prediction*.

Conclusion

Wearable biosensors, empowered by sophisticated AI, are poised to redefine the landscape of mental healthcare. By providing continuous, objective, and real-time insights into an individual's stress and mental state, this technology moves beyond mere fitness tracking to become a critical tool for clinical and personal well-being management. For professionals in digital health and AI, the opportunity lies in overcoming the current methodological challenges to build the next generation of validated, scalable, and ethically sound solutions that will finally meet the global demand for proactive mental health support.

*

References

[1] Kargarandehkordi, A., et al. (2025). *Fusing Wearable Biosensors with Artificial Intelligence for Mental Health Monitoring: A Systematic Review*. *Biosensors* (Basel), 15(4):202. [\[https://pmc.ncbi.nlm.nih.gov/articles/PMC12025234/\]](https://pmc.ncbi.nlm.nih.gov/articles/PMC12025234/) [2] Pingé, A., et al. (2024). *Detection and monitoring of stress using wearables*. *Frontiers in Computer Science*, 6:1478851. [\[https://www.frontiersin.org/journals/computer-science/articles/10.3389/fcomp.2024.1478851/full\]](https://www.frontiersin.org/journals/computer-science/articles/10.3389/fcomp.2024.1478851/full) [3] Shaffer, F., & Ginsberg, J. P. (2017). *An Overview of Heart Rate Variability Metrics and Norms*. *Frontiers in Public Health*, 5:258. [\[https://www.frontiersin.org/articles/10.3389/fpubh.2017.00258/full\]](https://www.frontiersin.org/articles/10.3389/fpubh.2017.00258/full) [4] Cano, S., et al. (2024). *Wearable Solutions Using Physiological Signals for Stress Detection*. *Sensors* (Basel), 24(24):8137. [\https://www.mdpi.com/1424-

8220/24/24/8137](<https://www.mdpi.com/1424-8220/24/24/8137>) [5] Tutunji, R., et al. (2023). Detecting Prolonged Stress in Real Life Using Wearable Biosensors. Sensors (Basel)*, 23(21):8858. [<https://pmc.ncbi.nlm.nih.gov/articles/PMC10623231/>] (<https://pmc.ncbi.nlm.nih.gov/articles/PMC10623231/>)

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2025 Rasit Dinc