

The Adaptive Algorithm: How Continuous Learning Works in Medical AI

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: December 17, 2023 | Medical Imaging AI

DOI: [10.5281/zenodo.1799727](https://doi.org/10.5281/zenodo.1799727)

Abstract

The Adaptive Algorithm: How Continuous Learning Works in Medical AI The integration of Artificial Intelligence (AI) into medicine promises a revolution ...

The Adaptive Algorithm: How Continuous Learning Works in Medical AI

The integration of Artificial Intelligence (AI) into medicine promises a revolution in diagnostics, treatment planning, and patient care. However, unlike traditional software, the environment in which medical AI operates is constantly changing. New diseases emerge, patient demographics shift, and clinical protocols evolve. This dynamic reality necessitates a paradigm shift from static, pre-trained models to **Continuous Learning (CL)**, also known as **Lifelong Machine Learning (LML)**, in medical AI [1]. This approach allows AI systems to adapt and improve over time, ensuring their relevance and accuracy in real-world clinical settings.

The Imperative for Continuous Learning

Traditional AI models are trained on a fixed dataset and then deployed. This static nature leads to a critical problem known as **model drift** or **dataset shift** [2]. Model drift occurs when the statistical properties of the data used for training no longer match the properties of the data encountered during deployment. In medicine, this can be caused by:

1. **Changes in Equipment:** New imaging scanners or laboratory assays can subtly alter data characteristics.
2. **Evolving Patient Populations:** Shifts in demographics, disease prevalence, or treatment patterns.
3. **New Clinical Practices:** Updated guidelines or the introduction of new drugs can change the relationship between input data and clinical outcomes.

When a static AI model encounters this drift, its performance degrades, potentially leading to diagnostic errors and compromised patient safety. Continuous learning is the technological answer to this problem, allowing the AI to remain robust and reliable by constantly updating its knowledge base

[3].

Mechanisms of Continuous Learning in Medical AI

Continuous learning systems are designed to process a stream of new data, learn from it, and update the model without forgetting previously acquired knowledge. This process involves a delicate balance between **stability** (retaining old knowledge) and **plasticity** (acquiring new knowledge) [4].

The primary mechanisms employed in medical CL systems fall into three categories:

Mechanism	Description	Application in Medical AI
Regularization-based	Adds a penalty term to the loss function during training to prevent significant changes to parameters important for previous tasks.	Used to protect the knowledge gained from rare diseases or specific patient cohorts.
Rehearsal/Memory-based	Stores a small subset of the old training data (a "memory buffer") and mixes it with new data during retraining.	Mitigates catastrophic forgetting —the rapid loss of old knowledge when learning new information.
Architecture-based	Dynamically expands the model's architecture (e.g., adding new neural network nodes) as new tasks or data streams are introduced.	Allows the model to learn entirely new medical concepts without interfering with existing ones.

A key challenge that all these mechanisms seek to address is **catastrophic forgetting**, a phenomenon where a neural network, upon learning a new task, completely overwrites the parameters essential for a previous task [5]. For a medical AI diagnosing both common and rare conditions, forgetting the rare ones due to a flood of new common cases is an unacceptable risk. Rehearsal-based methods, in particular, are crucial for maintaining a high standard of care across a broad spectrum of medical knowledge.

Challenges and the Path to Clinical Implementation

While the theoretical benefits of continuous learning are clear, its implementation in a clinical setting presents significant challenges, particularly concerning regulation and validation.

1. Regulatory Hurdles

The regulatory framework for medical devices, such as those established by the FDA or Health Canada, is built around the concept of a fixed, locked algorithm that is validated before deployment. A continuously learning AI, by its very nature, is an "unlocked" algorithm that changes post-deployment. Regulators are currently developing new frameworks to manage this dynamic nature, focusing on a **Total Product Lifecycle (TPL)** approach [1]. This involves pre-specifying the types of changes the AI can make, the data it can learn from, and the performance monitoring mechanisms that must be in place.

2. Data Governance and Bias

Continuous learning relies on a constant stream of real-world data, which introduces new risks of **algorithmic bias**. If the new data stream is not representative of the target population—for instance, if it is predominantly from a single hospital or demographic—the AI will adapt in a way that degrades its performance for underrepresented groups [2]. Careful data governance, including real-time performance monitoring across different patient subgroups, is essential to prevent the amplification of existing health disparities.

3. Validation and Monitoring

The traditional method of external validation—testing a model on a separate, static dataset—is insufficient for CL systems. Instead, a dynamic approach is required, where the AI's performance is continuously monitored in real-time. This involves establishing clear performance metrics and creating automated triggers for human oversight when performance drops below a pre-defined threshold.

The future of medical AI is undeniably adaptive. The ability of these systems to learn from every new patient case, every new piece of equipment, and every change in clinical practice will be the defining factor in their long-term success and trustworthiness. For more in-depth analysis on this topic, the resources at [www.rasitdinc.com](<https://www.rasitdinc.com>) provide expert commentary and further reading on the intersection of digital health, AI, and clinical practice.

**

References

[1] Smith, A., & Severn, M. (2022). *An Overview of Continuous Learning Artificial Intelligence-Enabled Medical Devices*. Emerging Health Technologies. [<https://www.ncbi.nlm.nih.gov/books/NBK605105>] (<https://www.ncbi.nlm.nih.gov/books/NBK605105>)

[2] Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key challenges for delivering clinical impact with artificial intelligence. *BMC Medicine*, 17(1), 1-10. [<https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-019-1426-2>] (<https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-019-1426-2>)

[3] Pianykh, O. S., et al. (2020). Continuous Learning AI in Radiology: Implementation Principles and Early Applications. *Radiology*, 297(2), 432-441. [<https://pubs.rsna.org/doi/abs/10.1148/radiol.2020200038>] (<https://pubs.rsna.org/doi/abs/10.1148/radiol.2020200038>)

[4] Wu, X., Xu, Z., & Tong, R. K. (2024). Continual learning in medical image analysis: A survey. *Computers in Biology and Medicine*, 182, 109206. [<https://www.sciencedirect.com/science/article/abs/pii/S0010482524012915>] (<https://www.sciencedirect.com/science/article/abs/pii/S0010482524012915>)

[5] Lee, C. S., et al. (2020). Clinical applications of continual learning machine learning. *The Lancet Digital Health*, 2*(10), e508-e517. [[https://www.thelancet.com/journals/landig/article/PIIS2589-7500\(20\)30102-](https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30102-)

3/fulltext]([https://www.thelancet.com/journals/landig/article/PIIS2589-7500\(20\)30102-3/fulltext](https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30102-3/fulltext))

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2023 Rasit Dinc