

Should AI Be Used in Organ Allocation? An Ethical and Technological Analysis

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: January 26, 2022 | General AI in Healthcare

DOI: [10.5281/zenodo.17998044](https://doi.org/10.5281/zenodo.17998044)

Abstract

The allocation of scarce, life-saving organs is a process fraught with ethical dilemmas and logistical challenges. The rise of artificial intelligence AI pro...

The allocation of scarce, life-saving organs is a process fraught with ethical dilemmas and logistical challenges. The rise of artificial intelligence (AI) promises to revolutionize this critical area of healthcare, but raises a host of questions: Can AI make organ allocation fairer and more efficient, and what are the ethical risks of handing over such a momentous decision to a machine?

The Promise of AI in Organ Allocation

AI and machine learning (ML) models have the potential to significantly improve upon current organ allocation systems. These technologies can process vast amounts of data—including a patient's medical history, donor organ condition, and geographical factors—to identify the optimal donor-recipient match with speed and precision [1]. By analyzing complex datasets, AI can predict post-transplant success, assess risks like delayed graft function, and personalize the allocation process [2]. This data-driven approach could lead to a more equitable and efficient distribution of organs, ultimately saving more lives.

Ethical Considerations and Challenges

Despite the potential benefits, the integration of AI into organ allocation is not without its ethical challenges. One of the primary concerns is the potential for bias in AI algorithms. If the data used to train these models reflects existing societal biases, the AI could perpetuate or even amplify these inequalities, leading to discriminatory practices in organ allocation [3]. For example, if historical data shows that certain demographic groups have had less access to healthcare, an AI model might inadvertently learn to deprioritize these groups in the allocation process. This raises serious questions about fairness and equity.

Another significant ethical concern is the **lack of interpretability and transparency** in complex AI models, often referred to as the "black box"

problem [4]. When a human committee makes an allocation decision, the reasoning can be scrutinized and appealed. However, if an AI system makes a life-or-death decision without a clear, human-understandable explanation, it can erode trust in the system and lead to challenges in accountability. Erroneous decision-making and the dehumanization of medical care are key bioethical challenges that must be addressed before widespread adoption [4].

The Question of Public Trust

The success of any new organ allocation system hinges on public trust and acceptance. A study on public attitudes toward AI in liver allocation found that a majority of participants (69.2%) found the use of AI acceptable, and most (72.7%) stated they would not be less likely to donate their organs if AI were used [5]. This suggests a general openness to the technology. However, the same study highlights the need for robust ethical frameworks and clear communication to maintain this trust. The public must be assured that the system is fair, unbiased, and that human oversight remains a critical component. The objective is not to replace human judgment entirely, but to augment it with powerful analytical tools.

The Path Forward: Augmentation, Not Automation

The debate over whether AI *should* be used in organ allocation is moving toward a consensus: it should, but with extreme caution and rigorous ethical oversight. AI's role should be seen as an **augmentative tool**—a "smart match" system that provides clinicians and allocation committees with superior predictive insights, rather than an autonomous decision-maker [2].

To navigate this complex landscape, several steps are crucial: 1. **Bias Mitigation:** Actively auditing and debiasing the training data to ensure equitable outcomes across all demographic groups [3]. 2. **Explainable AI (XAI):** Developing models that can provide clear, interpretable reasons for their recommendations, moving beyond the "black box" [4]. 3. **Human-in-the-Loop:** Maintaining human oversight and final decision-making authority to ensure compassion and context are not lost.

The integration of AI into organ allocation represents a profound shift in digital health. It offers a chance to save more lives and distribute a scarce resource more efficiently, but the ethical stakes are too high to proceed without a deep commitment to fairness, transparency, and accountability. The future of organ allocation lies in a symbiotic relationship between advanced AI and deeply human ethical judgment.

For more in-depth analysis on the ethical and technological intersection of AI and digital health, the resources at www.rasitdinc.com provide expert commentary and a wealth of information.

References

- [1] Salybekov, A. A., et al. (2025). Ethics and Algorithms to Navigate AI's Emerging Role in Organ Transplantation. *MDPI*.
- [2] Deshpande, R. (2024). Smart match: revolutionizing organ allocation through artificial intelligence. *Frontiers in Artificial Intelligence*.
- [3] Salybekov, A. A., et al. (2025). Ethics

and Algorithms to Navigate AI's Emerging Role in Organ Transplantation. *PMC*. [4] Lozano-Suarez, N. (2025). Bioethical challenges in the integration of artificial intelligence in organ transplantation. *PMC*. [5] Drezga-Kleiminger, M., et al. (2023). Should AI allocate livers for transplant? Public attitudes and ethical considerations. *BMC Medical Ethics*.

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2022 Rasit Dinc