

Real-Time Large Vessel Occlusion Detection with Viz.ai: Enhancing Stroke Care Efficiency

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: August 7, 2025 | AI in Healthcare

DOI: [10.5281/zenodo.17996421](https://doi.org/10.5281/zenodo.17996421)

Abstract

Discover how Viz.ai's AI-powered real-time LVO detection accelerates stroke treatment with over 90% sensitivity and FDA clearance, reducing door-to-thrombectomy time.

Real-Time Large Vessel Occlusion Detection with Viz.ai: Enhancing Stroke Care Efficiency

Introduction to Large Vessel Occlusion (LVO) Stroke and the Need for Rapid Detection

Large vessel occlusion (LVO) strokes are among the most severe types of ischemic strokes, characterized by the blockage of major cerebral arteries such as the internal carotid artery, middle cerebral artery (M1 segment), or basilar artery. These occlusions lead to significant cerebral ischemia, resulting in extensive brain tissue damage if not promptly treated. Given that "time is brain," rapid identification and intervention in LVO strokes are crucial to minimize irreversible neurological deficits and improve functional outcomes. Mechanical thrombectomy, a highly effective reperfusion therapy, has revolutionized the management of LVO stroke, but its efficacy is critically dependent on minimizing delays in diagnosis and treatment initiation.

Traditional stroke workflows often rely on manual interpretation of computed tomography angiography (CTA) images by neuroradiologists or stroke neurologists, a process that can be time-consuming and subject to variability. Consequently, delays in LVO detection can impede timely decision-making and treatment delivery. To address these challenges, artificial intelligence (AI)-based tools such as Viz.ai have emerged to facilitate rapid, automated detection of LVO strokes, aiming to streamline stroke workflows and enhance patient care.

Viz.ai: AI-Powered Real-Time LVO Detection

Viz.ai is an FDA-cleared medical software platform that employs advanced deep learning algorithms to analyze CTA images and automatically detect LVO strokes in real time. The system integrates seamlessly into clinical workflows,

providing instant notifications to stroke teams and enabling prompt coordination for intervention. By automating image interpretation, Viz.ai reduces reliance on manual review, decreases time-to-diagnosis, and supports faster treatment decisions.

Key Features and Technical Overview

- **Rapid Automated Notification:** Once a CTA scan is uploaded, Viz.ai's AI models analyze the images and detect potential LVOs within minutes. The system sends secure, automated alerts to the on-call stroke team via mobile devices and hospital communication systems in under 5 minutes on average.
- **High Sensitivity and Specificity:** Clinical validation studies report sensitivity above 90% and high specificity for LVO detection, ensuring reliable identification while minimizing false positives that could lead to unnecessary interventions.
- **Integration and Interoperability:** Viz.ai integrates with existing Picture Archiving and Communication Systems (PACS) and hospital information systems, facilitating seamless data flow and preserving established clinical workflows without adding complexity.
- **Regulatory Clearance:** The platform received FDA clearance in 2018 as a Class II medical device, affirming its safety, efficacy, and compliance with regulatory standards for clinical use.

Clinical Significance and Research Evidence

The clinical impact of Viz.ai has been demonstrated in multiple peer-reviewed studies emphasizing its potential to improve stroke care metrics and patient outcomes. A landmark study published in *JAMA Neurology* (2020) evaluated the effect of Viz.ai implementation on workflow efficiency and clinical outcomes. The study found that the use of Viz.ai reduced door-to-thrombectomy time by an average of 52 minutes compared to conventional workflows. This reduction is clinically meaningful, as every 30-minute delay in reperfusion is associated with a 10-15% decrease in the likelihood of functional independence at 90 days post-stroke.

In addition to time savings, Viz.ai's automated alerts improve communication and coordination between emergency departments, radiologists, neurologists, and neurointerventional teams. Enhanced coordination facilitates rapid patient transfer decisions, timely mobilization of thrombectomy teams, and optimized use of hospital stroke resources.

Other studies have corroborated these findings, showing that AI-assisted LVO detection increases the rate of appropriate thrombectomy referrals, reduces stroke team activation errors, and shortens imaging-to-groin puncture intervals. Collectively, these improvements align with evidence-based stroke care guidelines advocating for streamlined workflows and expedited reperfusion therapies.

Applications of Viz.ai in Stroke Management

- **Emergency Department Triage:** Viz.ai enables rapid identification of LVO

strokes upon patient presentation, allowing emergency clinicians to prioritize cases requiring urgent intervention.

- **Telemedicine and Hub-and-Spoke Models:** In regional stroke networks, Viz.ai supports remote consultation by alerting specialists promptly, facilitating timely decisions on patient transfer to comprehensive stroke centers.
- **Workflow Optimization:** By automating image review and notification, the platform reduces cognitive load on clinicians and decreases dependence on 24/7 neuroradiology coverage, especially in resource-limited settings.
- **Quality Improvement and Data Analytics:** Viz.ai collects and aggregates workflow data, enabling hospitals to monitor performance metrics, identify bottlenecks, and implement targeted process improvements.

Challenges and Limitations

Despite its transformative potential, integrating AI tools like Viz.ai into clinical practice presents challenges:

- **Algorithm Limitations:** Although sensitivity is high, AI algorithms may miss subtle or atypical LVO presentations, necessitating continued expert oversight.
- **False Positives:** Occasional false-positive alerts can lead to unnecessary activations, resource utilization, and clinician alert fatigue, underscoring the need for balanced algorithm thresholds.
- **Data Privacy and Security:** Handling sensitive patient imaging data requires robust cybersecurity measures and compliance with regulations such as HIPAA.
- **Integration Barriers:** Variability in hospital IT infrastructure and PACS systems can complicate seamless integration, requiring tailored implementation strategies.
- **Cost and Access:** The financial investment for AI platforms and associated infrastructure may be a barrier for smaller or under-resourced institutions.

Future Directions

The evolution of AI in stroke care continues to accelerate, with several promising avenues for future development:

- **Multimodal Imaging Analysis:** Expanding AI capabilities to interpret perfusion imaging and MRI sequences could enhance stroke characterization and treatment selection.
- **Predictive Analytics:** Integrating clinical data with imaging to predict patient outcomes and guide personalized treatment strategies.
- **Expanded Indications:** Applying AI detection to posterior circulation strokes and distal vessel occlusions to broaden clinical utility.
- **Continuous Learning Systems:** Implementing adaptive algorithms that

improve accuracy over time with accumulation of real-world data.

- **Global Accessibility:** Developing cost-effective, scalable AI solutions to improve stroke care in low- and middle-income countries.

Frequently Asked Questions

What is Large Vessel Occlusion (LVO)? LVO refers to the blockage of major cerebral arteries responsible for supplying large regions of the brain. LVO strokes often result in severe neurological deficits and require urgent treatment. **How does Viz.ai improve stroke care?** By automatically analyzing CTA images and sending rapid alerts to stroke teams, Viz.ai accelerates diagnosis and treatment initiation, reducing delays that can worsen patient outcomes. **Is Viz.ai clinically validated?** Yes. Viz.ai is FDA cleared and supported by multiple peer-reviewed studies demonstrating its ability to reduce treatment times and improve workflow efficiency. **Can Viz.ai replace expert radiologists?** No. Viz.ai is designed to augment clinical decision-making, not replace expert interpretation. Final clinical decisions remain the responsibility of healthcare professionals.

Conclusion

Viz.ai represents a significant advancement in the application of AI to acute stroke care by enabling real-time, automated detection of large vessel occlusions. Its capacity to dramatically reduce time-to-treatment aligns with established evidence underscoring the importance of rapid reperfusion in improving stroke outcomes. By enhancing workflow efficiency, facilitating communication, and supporting timely clinical decision-making, Viz.ai is transforming stroke management paradigms and offering hope for improved patient recovery. As AI technologies continue to mature, their integration into comprehensive stroke care pathways promises to further elevate standards of care and save lives worldwide.

For healthcare providers and stroke centers aiming to optimize patient outcomes, adopting AI-driven platforms like Viz.ai is a pivotal step toward more efficient and effective stroke management.
