

Precision Prescribing: How AI-Powered Clinical Decision Support Tools are Revolutionizing Medication Dosing Optimization

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: July 23, 2025 | Digital Therapeutics

DOI: [10.5281/zenodo.17996617](https://doi.org/10.5281/zenodo.17996617)

Abstract

Precision Prescribing: How AI-Powered Clinical Decision Support Tools are Revolutionizing Medication Dosing Optimization

Precision Prescribing: How AI-Powered Clinical Decision Support Tools are Revolutionizing Medication Dosing Optimization

The pursuit of optimal medication dosing—a delicate balance between therapeutic efficacy and minimizing toxicity—remains one of the most persistent challenges in modern healthcare. For many critical medications, the difference between a life-saving dose and a harmful one is razor-thin. Traditional, population-based dosing regimens, which rely on standardized averages, are inherently imprecise. This "one-size-fits-all" approach frequently fails to account for the profound inter-individual variability in drug metabolism, leading to sub-therapeutic outcomes or, worse, **Adverse Drug Events (ADEs)**. The need for a more personalized, data-driven approach is paramount, and the solution is emerging from the intersection of **Digital Health** and **AI in Healthcare: Clinical Decision Support Tools (CDST)** for **Medication Dosing Optimization**.

The Imperative for Optimization: The High Cost of Imprecision

The consequences of imprecise dosing are staggering. Studies have consistently shown a high incidence of ADEs, with rates reported as high as 50.1 per 1,000 person-years in ambulatory settings [1]. A significant portion of these events are preventable, often stemming from wrong-dose errors [1]. The challenge is compounded by factors such as patient genetics, age, comorbidities, and the narrow therapeutic windows of many life-saving drugs, including anticoagulants and certain chemotherapeutics. In this complex landscape, clinicians are often forced to rely on trial-and-error adjustments, a

process that is slow, costly, and potentially dangerous for the patient. This clinical reality underscores the urgent necessity for advanced tools that can transform prescribing from an art of approximation into a science of **Precision Medicine**.

AI and CDST: The Engine of Precision Dosing

Clinical Decision Support Tools (CDST) are software systems designed to integrate patient-specific data with clinical knowledge to provide actionable, evidence-based recommendations at the point of care. While early CDST focused on simple rule-based alerts for drug-drug interactions, the new generation is powered by **Artificial Intelligence (AI)**, specifically **Machine Learning (ML)**, to tackle the complexity of personalized dosing.

AI-powered CDST moves beyond static guidelines by leveraging sophisticated analytical models to process vast, high-dimensional datasets, including electronic health records (EHRs), laboratory results, and increasingly, pharmacogenomic data. The core innovation lies in the ability of these models to perform real-time, patient-specific **Pharmacokinetic (PK) and Pharmacodynamic (PD) Modeling**.

A prime example of this transformative technology is the **CURATE.AI** platform, a personalized dosing CDSS [2]. Unlike traditional big data approaches that require massive patient cohorts, CURATE.AI utilizes a patient's own small, dynamic dataset—their unique response to initial doses—to calibrate and predict the optimal dose for the next cycle [3]. This dynamic personalization allows the system to identify the "therapeutic sweet spot" for an individual, minimizing toxicity while maximizing drug efficacy. By continuously learning from the patient's physiological response, these tools enable a truly individualized treatment strategy, marking a fundamental shift in how medication is managed.

Benefits and Impact on Drug Safety

The implementation of AI-driven CDST offers a multi-faceted return on investment for healthcare systems and patients alike.

Benefit	Benefit	Description	Impact on Patient Care		---		---		---			Enhanced Drug Safety		Provides real-time, patient-specific alerts for potential toxicity, contraindications, and drug-drug interactions.		Significantly reduces the incidence of preventable ADEs and medication errors [4].			Improved Efficacy		Achieves and maintains the optimal therapeutic drug concentration more quickly and consistently.		Leads to better clinical outcomes and faster recovery times.			Reduced Alert Fatigue		AI models can prioritize and filter alerts based on their clinical relevance and predicted impact, reducing the number of irrelevant warnings.		Increases physician trust and adherence to critical alerts, a key challenge in older CDSS [5].			Cost Reduction		Decreases the need for costly interventions to treat ADEs and shortens hospital stays.		Improves the overall efficiency and financial sustainability of healthcare delivery.	
---------	---------	-------------	------------------------	--	-----	--	-----	--	-----	--	--	-----------------------------	--	--	--	--	--	--	--------------------------	--	--	--	--	--	--	------------------------------	--	--	--	--	--	--	-----------------------	--	--	--	--	--

Challenges and Future Directions

Despite the clear promise, the path to widespread adoption of AI-powered CDST is not without hurdles. Challenges include ensuring high-quality, standardized data input, seamlessly integrating these tools into existing, often fragmented, EHR systems, and overcoming the issue of physician acceptance and trust. Furthermore, the rigorous validation of AI models—especially the need for external validation across diverse patient populations—remains a critical step before full clinical deployment [5].

The future of **Medication Dosing Optimization** is bright. It involves the integration of even more comprehensive 'omics' data (e.g., proteomics, metabolomics) and a greater focus on **Explainable AI (XAI)**. XAI will provide clinicians with transparent reasoning behind a CDST's recommendation, fostering trust and facilitating better clinical judgment. By continuing to refine these intelligent tools, the healthcare community can look forward to a future where every prescription is a precise, personalized, and safer intervention.

References

[1] Gurwitz, J. H., Field, T. S., Harrold, L. R., Rothschild, J., Debellis, K., Seger, A. C., ... & Bates, D. W. (2003). *Incidence and preventability of adverse drug events among older persons in the ambulatory setting*. JAMA, 289(9), 1107-1116. [<https://jamanetwork.com/journals/jama/fullarticle/196099>] (<https://jamanetwork.com/journals/jama/fullarticle/196099>)

[2] Vijayakumar, S., Blasiak, A., & Png, K. C. (2023). *Physicians' Perspectives on AI in Clinical Decision Support Systems: Interview Study of the CURATE.AI Personalized Dose Optimization Platform*. JMIR Human Factors, 10(1), e48476. [<https://pubmed.ncbi.nlm.nih.gov/37902825/>] (<https://pubmed.ncbi.nlm.nih.gov/37902825/>)

[3] Blasiak, A., Png, K. C., & Lee, S. C. (2024). *Personalized dose selection for the first Waldenström macroglobulinemia patient on the PRECISE CURATE.AI trial*. Nature Medicine, 30(1), 1-10. [<https://www.nature.com/articles/s41746-024-01195-5>] (<https://www.nature.com/articles/s41746-024-01195-5>)

[4] Armando, L. G., Farias, M. A., & De La Torre, A. (2023). *Clinical decision support systems to improve drug prescription appropriateness: a systematic review*. BMC Medical Informatics and Decision Making, 23(1), 1-14. [<https://pmc.ncbi.nlm.nih.gov/articles/PMC10163516/>] (<https://pmc.ncbi.nlm.nih.gov/articles/PMC10163516/>)

[5] Graafsma, J., Murphy, R. M., van de Garde, E. M. W., Karapinar-Çarkit, F., Derijks, H. J., Hoge, R. H. L. H., ... & van den Bemt, P. M. L. A. (2024). *The use of artificial intelligence to optimize medication alerts generated by clinical decision support systems: a scoping review*. Journal of the American Medical Informatics Association*, 31(6), 1411-1422. [<https://pmc.ncbi.nlm.nih.gov/articles/PMC11105146/>] (<https://pmc.ncbi.nlm.nih.gov/articles/PMC11105146/>)

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2025 Rasit Dinc