

How Neural Networks Analyze CT Scans to Detect Abdominal Aortic Aneurysms

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: October 13, 2025 | AI in Healthcare

DOI: [10.5281/zenodo.17996401](https://doi.org/10.5281/zenodo.17996401)

Abstract

Discover how neural networks analyze CT scans to detect abdominal aortic aneurysms with high accuracy, enhancing early diagnosis and clinical outcomes.

How Neural Networks Analyze CT Scans to Detect Abdominal Aortic Aneurysms (AAA)

Introduction

Abdominal aortic aneurysm (AAA) is a localized dilation of the abdominal aorta exceeding 3 cm in diameter, posing a significant risk of rupture and life-threatening hemorrhage if left undetected and untreated. Early and precise detection of AAA is vital for timely clinical intervention, which can drastically reduce morbidity and mortality. Computed tomography (CT) imaging remains the gold standard for AAA diagnosis due to its high spatial resolution and ability to capture detailed vascular anatomy. However, interpretation of CT scans is time-consuming and subject to inter-observer variability among radiologists.

Recent advancements in artificial intelligence (AI), particularly deep learning through neural networks, have revolutionized medical imaging analysis. Neural networks offer automated, accurate, and reproducible detection of AAAs from CT images, enabling enhanced screening and risk stratification. This article explores the fundamental principles behind how neural networks analyze CT scans for AAA detection, their clinical significance, current research evidence, practical applications, challenges, and future directions.

Neural Network Architecture in Medical Imaging for AAA Detection

Neural networks designed for medical imaging typically consist of multiple interconnected layers that process input image data to extract relevant features and perform classification tasks. When applied to AAA detection, these networks analyze the anatomical structures in CT images to identify aneurysmal changes.

1. Input Layer

- **Data Acquisition:** The neural network receives high-resolution axial CT slices, frequently standardized to 512×512 pixels per slice, with multiple slices forming a volumetric dataset. - **Preprocessing:** Each pixel intensity, representing radiodensity (measured in Hounsfield Units), is normalized and converted into numerical arrays to be processed by the network.

2. Hidden Layers

Hidden layers serve as the core feature extractors and pattern recognizers: - **Convolutional Layers:** Utilize filters/kernels that slide over the input image to detect edges, textures, and shapes relevant to the aortic wall and lumen. - **Pooling Layers:** Reduce spatial dimensions to focus on dominant features and reduce computational complexity. - **Feature Maps:** Enable detection of subtle differences in tissue density, calcifications, and aortic wall irregularities. - **Region Proposal Networks (RPNs):** In some architectures, these highlight potential aneurysm regions before classification. - **Morphological Feature Extraction:** The network learns to measure aortic diameter, assess aneurysm shape (fusiform vs. saccular), and evaluate surrounding tissue characteristics. Weights and biases within these layers are iteratively optimized during training using large annotated datasets.

3. Output Layer

- **Classification:** The final layer produces probabilistic outputs indicating the presence or absence of AAA. - **Localization:** Advanced models may also generate segmentation maps highlighting aneurysm boundaries. - Example output: "Probability of AAA = 95%; aneurysm diameter = 4.2 cm; aneurysm type = fusiform."

Key Neural Network Concepts in AAA Detection

- **Neurons:** Basic computational units that sum weighted inputs and apply non-linear activation functions to detect complex patterns. - **Weights:** Adjustable parameters learned during training that determine the importance of specific features. - **Activation Functions:** Enable the modeling of non-linear relationships; common choices include Rectified Linear Unit (ReLU), sigmoid, and softmax functions. - **Backpropagation:** Algorithm used to minimize error by updating weights based on the difference between predicted and true labels. - **Transfer Learning:** Utilizing pretrained networks on large image datasets to improve learning efficiency for AAA detection using smaller medical datasets.

Forward Propagation Process Explained

1. **Input Feeding:** The preprocessed CT images are input into the network.
2. **Feature Extraction:** Through convolutional and pooling operations, the network identifies vascular structures, measuring aortic diameter and detecting morphological anomalies.
3. **Classification and Localization:** The

output layer predicts AAA presence and optionally provides segmentation masks for precise aneurysm boundary delineation. **4. Post-processing:** Results are often refined using clinical heuristics or combined with patient metadata for enhanced diagnostic accuracy.

Clinical Significance of Neural Network-Based AAA Detection

- **Early Diagnosis:** Automated detection allows for prompt identification of AAAs before rupture, enabling elective surgical repair or endovascular intervention. - **Risk Stratification:** Precise measurement of aneurysm size and morphology facilitates individualized risk assessment for aneurysm expansion and rupture. - **Workflow Efficiency:** Neural networks reduce radiologist workload by pre-screening large volumes of CT scans, allowing clinicians to focus on complex cases. - **Standardization:** AI-driven analysis minimizes inter- and intra-observer variability, leading to more consistent and reliable AAA assessments. - **Screening Programs:** Integration into population screening, especially in high-risk groups (e.g., older males with smoking history), enhances early detection rates.

Research Evidence Supporting Neural Networks in AAA Detection

Multiple studies have demonstrated the efficacy of neural networks in AAA identification and characterization:

- **Accuracy Metrics:** Recent convolutional neural network (CNN) models have achieved sensitivity and specificity rates exceeding 90-95% for AAA detection on diverse CT datasets. - **Segmentation Performance:** Deep learning-based segmentation algorithms accurately delineate aneurysm boundaries with Dice similarity coefficients above 0.85, comparable to expert manual annotations. - **Morphological Classification:** AI models have successfully differentiated between fusiform and saccular aneurysms, which have distinct prognostic implications. - **Multimodal Integration:** Combining CT imaging features with clinical data (e.g., blood pressure, biomarkers) through neural networks enhances predictive modeling of aneurysm growth and rupture risk.

Practical Applications in Clinical Settings

- **Automated Screening Tools:** Neural networks embedded in radiology workflows flag potential AAAs for radiologist review. - **Surgical Planning:** Precise 3D segmentation supports preoperative planning for endovascular aneurysm repair (EVAR). - **Surveillance Programs:** AI assists in longitudinal monitoring of aneurysm progression by quantifying changes in size and morphology over time. - **Telemedicine:** Remote analysis of CT scans using cloud-based neural network platforms expands access to expert AAA diagnostics.

Challenges and Limitations

- **Data Variability:** Variations in CT acquisition protocols, contrast phases, and patient anatomy can affect model performance. - **Limited Annotated**

Data: High-quality labeled datasets for AAA are scarce, limiting training robustness. - **Generalizability:** Models trained on specific populations may underperform on external datasets without domain adaptation. - **Explainability:** Neural networks often operate as “black boxes,” complicating clinical trust and regulatory approval. - **Integration Barriers:** Incorporating AI tools into existing healthcare IT infrastructure poses logistical and interoperability challenges.

Future Directions

- **Multimodal AI Models:** Integration of CT imaging with genetic, biochemical, and clinical data to improve AAA risk prediction. - **Explainable AI:** Development of interpretable neural networks that provide rationale for their decisions to increase clinician confidence. - **Real-Time Analysis:** Deployment of AI in CT scanners for immediate AAA assessment during imaging acquisition. - **Federated Learning:** Collaborative training across multiple institutions without sharing sensitive patient data to enhance model robustness. - **Personalized Medicine:** AI-driven individualized surveillance intervals and treatment planning based on predicted aneurysm behavior.

Frequently Asked Questions (FAQs)

Q: What defines an abdominal aortic aneurysm on CT imaging? A: An abdominal aortic aneurysm is defined as a focal dilatation of the abdominal aorta with a diameter exceeding 3 cm or 50% greater than the normal adjacent segment. **Q: How reliable are neural networks for AAA detection?** A: State-of-the-art neural networks achieve sensitivity and specificity rates above 90%, comparable to expert radiologists, though clinical validation is ongoing. **Q: Can AI distinguish between different aneurysm morphologies?** A: Yes, advanced models analyze shape and texture features to classify aneurysms as fusiform or saccular, which have different clinical implications. **Q: Are there FDA-approved AI tools for AAA detection?** A: Several AI-based medical imaging software have received regulatory clearance for vascular imaging analysis, but the adoption for AAA-specific detection is still emerging.

Conclusion

Neural networks represent a transformative technology in the detection and characterization of abdominal aortic aneurysms via CT imaging. By automating complex image analysis tasks, these AI models enhance diagnostic accuracy, reduce clinical workload, and standardize patient care. While challenges remain in data quality, model explainability, and clinical integration, ongoing research and technological advances promise to further embed neural networks into routine AAA screening and management protocols. Ultimately, the convergence of AI and medical imaging heralds a new era of precision vascular medicine, improving outcomes for patients at risk of this silent but deadly condition.

Keywords: abdominal aortic aneurysm, AAA detection, neural networks, deep

learning, computed tomography, medical imaging, AI in healthcare, vascular imaging, aneurysm screening, convolutional neural networks.

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2025 Rasit Dinc