

Leveraging Artificial Intelligence for Enhanced Medication Adherence: A Professional Guide

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: August 25, 2023 | Digital Therapeutics

DOI: [10.5281/zenodo.17997395](https://doi.org/10.5281/zenodo.17997395)

Abstract

Medication non-adherence—the failure to take medications as prescribed—is a pervasive and costly public health challenge, contributing to poor treatment outc...

Medication non-adherence—the failure to take medications as prescribed—is a pervasive and costly public health challenge, contributing to poor treatment outcomes and avoidable hospitalizations [1]. With non-adherence costing healthcare systems hundreds of billions of dollars annually, traditional reminders often lack the personalization required to address the complex behavioral and cognitive factors underlying the issue. The integration of **Artificial Intelligence (AI)** into digital health platforms is now revolutionizing this landscape, offering sophisticated, personalized, and proactive solutions to help patients adhere to their regimens.

The AI Advantage: Moving Beyond Simple Alarms

The fundamental question for many professionals and the general public is: "**How do I use AI for medication reminders?**" The answer lies in AI's ability to process patient data to generate context-aware, predictive, and personalized interventions.

AI-powered systems utilize machine learning (ML) models to analyze diverse data streams, including patient demographics, clinical data, behavioral patterns, and contextual information [2]. By analyzing these factors, AI can predict when a patient is most likely to miss a dose and deliver an intervention optimized for that specific moment and individual. This shift from reactive to **predictive adherence support** is the core innovation.

| AI-Powered Reminder Feature | Traditional Reminder Feature | Impact on Adherence | | :--- | :--- | :--- | | **Personalized Timing** | Fixed time (e.g., 8:00 AM) | Reminders are sent when the patient is most receptive, based on their daily routine. | | **Adaptive Messaging** | Static text (e.g., "Take your medication") | Messaging is tailored (e.g., motivational, educational, or empathetic) based on past non-adherence reasons. | | **Predictive Alerting** | Alerts only when a dose is due | Alerts are sent *before* a dose is due if the AI predicts a high risk of a missed dose. | | **Integration with Sensors** | None |

Connects with smart pill bottles or ingestible sensors to verify ingestion, not just notification [3]. |

Current Applications and Mechanisms

AI is deployed in medication adherence through several key mechanisms, often integrated into mobile applications or specialized digital platforms:

1. Context-Aware Reminders

These systems use AI to determine the optimal time and method for a reminder. For instance, an AI might learn a patient's non-adherence patterns and automatically adjust the reminder's persistence or delivery channel (e.g., from a push notification to a voice alert) [4].

2. Predictive Risk Modeling

Advanced AI models, including those using Reinforcement Learning (RL), are being developed to forecast which patients are most at risk for non-compliance *before* it occurs [5]. This allows healthcare providers to intervene proactively with high-touch support, such as a call from a care coordinator.

3. Visual Confirmation and Monitoring

Some commercial AI tools use computer vision to monitor and confirm medication ingestion via a patient's smartphone camera. The AI confirms the correct pill is taken at the correct time, providing a high level of adherence verification for clinical trials and high-risk patients [6].

Challenges and the Path Forward

Despite the immense promise, the adoption of AI for medication reminders faces significant challenges: **Data Privacy and Security:** *AI systems require access to sensitive health data, necessitating robust security protocols and adherence to regulations like HIPAA and GDPR.* **Algorithmic Bias:** If training data is not diverse, the AI model may perform poorly for certain demographic groups, exacerbating existing health disparities. **Patient Trust and Usability:** *The system must be intuitive and trusted by the patient. Overly aggressive or frequent reminders can lead to "alert fatigue" and system abandonment.*

The future of AI in this domain is moving toward highly personalized, integrated digital therapeutics. These solutions will not only remind patients but also provide just-in-time education and adjust treatment plans based on real-world adherence data. For more in-depth analysis on this topic, the resources at www.rasitdinc.com provide expert commentary on the intersection of digital health, AI, and patient-centric care.

*

References

[1] World Health Organization. Adherence to long-term therapies: evidence for action. 2003. [2] Babel, A., Taneja, R., & Mondello Malvestiti, F. (2021).

Artificial Intelligence Solutions to Increase Medication Adherence in Patients with Non-Communicable Diseases. Frontiers in Digital Health, 3. [<https://www.frontiersin.org/articles/10.3389/fdgth.2021.669869/full>] (<https://www.frontiersin.org/articles/10.3389/fdgth.2021.669869/full>) [3] ZSN Reis, GMV Pereira, CS Dias, EM Lage, et al. (2025). *Artificial intelligence-based tools for patient support to enhance medication adherence: a focused review.* Frontiers in Digital Health. [<https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2025.1523070/full>] (<https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2025.1523070/full>) [4] Wubineh, B. Z., et al. (2024). *Exploring the opportunities and challenges of artificial intelligence in medication management.* International Journal of Medical Informatics, 182, 105307. [<https://www.sciencedirect.com/science/article/pii/S1078143923004179>] (<https://www.sciencedirect.com/science/article/pii/S1078143923004179>) [5] Agency for Healthcare Research and Quality (AHRQ). *Improving Adherence and Outcomes by Artificial Intelligence Adapted Text Messages.* [<https://digital.ahrq.gov/ahrq-funded-projects/improving-adherence-and-outcomes-artificial-intelligence-adapted-text-messages>] (<https://digital.ahrq.gov/ahrq-funded-projects/improving-adherence-and-outcomes-artificial-intelligence-adapted-text-messages>) [6] Zhu, Z., et al. (2025). *AI-based medication adherence prediction in patients with chronic diseases.* International Journal of Medical Informatics*, 185, 105401. [<https://www.sciencedirect.com/science/article/pii/S0920996424004857>] (<https://www.sciencedirect.com/science/article/pii/S0920996424004857>)
