

Is AI Reducing Healthcare Spending? An Academic Analysis of Digital Health Economics

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: April 4, 2023 | AI Diagnostics

DOI: [10.5281/zenodo.17997556](https://doi.org/10.5281/zenodo.17997556)

Abstract

Is AI Reducing Healthcare Spending? An Academic Analysis of Digital Health Economics
Introduction: The Promise and the Price Tag of AI in Healthcare The...

Is AI Reducing Healthcare Spending? An Academic Analysis of Digital Health Economics

Introduction: The Promise and the Price Tag of AI in Healthcare

The global healthcare system faces an unsustainable rise in costs. Artificial Intelligence (AI) is widely touted as a transformative technology to unlock massive efficiencies and reduce healthcare spending. But is this promise translating into economic reality? The question, "Is AI reducing healthcare spending?" is a complex economic and technological inquiry demanding a rigorous, evidence-based answer.

Macro-Economic Projections: The Multi-Billion Dollar Opportunity

Academic research suggests that the potential for AI-driven cost reduction is substantial. A seminal working paper from the National Bureau of Economic Research (NBER) estimates that the wider adoption of AI across the US healthcare system could lead to a **5 to 10 percent overall reduction in spending**, translating to a staggering **\$200 billion to \$360 billion** in annual savings (Sahni et al., 2023).

These macro-level projections are based on the aggregation of specific, high-impact use cases. The primary mechanisms for these savings include:

1. **Administrative Efficiency:** Automating tasks like medical coding, billing, and prior authorizations, which currently consume a significant portion of healthcare budgets.
2. **Clinical Optimization:** Improving diagnostic accuracy and reducing medical errors, leading to better patient outcomes and fewer costly readmissions.
3. **Drug Discovery and Development:** Accelerating the

R&D pipeline, lowering the enormous cost of bringing new therapies to market.

Micro-Level Evidence: Where AI is Already Cost-Effective

Beyond large-scale projections, systematic reviews confirm that clinical AI interventions are highly **cost-effective** and, in many cases, **cost-saving** at the point of care (El Arab et al., 2025).

Specific examples of proven economic efficiency include:

Diabetic Retinopathy Screening: AI-driven models have been shown to reduce per-patient screening costs by 14–19.5% while maintaining or improving diagnostic accuracy. **Atrial Fibrillation Screening:** Machine learning-based risk prediction algorithms have demonstrated incremental cost-effectiveness ratios (ICERs) well below accepted thresholds, effectively reducing the number of unnecessary screenings. **AI-Assisted Colonoscopy:** Studies have projected significant national savings, with one analysis estimating annual savings of \$149.2 million in Japan and \$85.2 million in the US by improving polyp detection and reducing the need for follow-up procedures.

These examples illustrate that AI's value proposition is rooted in its ability to **optimize resource use** and **minimize unnecessary procedures**, enhancing quality-adjusted life years (QALYs) while simultaneously lowering long-term costs.

The Counter-Argument: The Costs of Adoption and Implementation

While the evidence for potential savings is compelling, the path to realizing these benefits is fraught with economic challenges. The initial investment required for AI adoption can be a significant barrier, especially for smaller healthcare providers.

The costs of implementation include:

Infrastructure Investment: Upgrading IT systems, cloud computing resources, and data storage capabilities to handle the massive datasets required for AI training and deployment. **Workforce Training:** The need to train clinical and administrative staff to effectively integrate AI tools into their workflows, which represents a substantial, often-underestimated, operational cost. **Indirect Costs:** The economic impact of regulatory compliance, data privacy measures, and the potential for new forms of malpractice liability associated with AI-driven decisions.

Furthermore, some analyses caution that many evaluations rely on static models that may **overestimate benefits** by failing to capture the adaptive learning of AI systems or the full scope of indirect costs. The economic reality is that AI often introduces a new set of costs before the promised savings can be fully realized. The net effect on spending, therefore, depends heavily on successful, large-scale deployment and overcoming these initial hurdles.

Conclusion: A Conditional Optimism

The academic consensus leans toward a conditional optimism: **AI has the profound potential to reduce healthcare spending, but it is not a guaranteed outcome.** While evidence supports the cost-effectiveness of specific AI applications, realizing macro-economic savings requires overcoming significant implementation costs, regulatory inertia, and the challenge of integrating these tools into complex human-centric systems. The future of digital health economics will be defined by the successful navigation of this transition, turning potential savings into realized budget reductions.

For more in-depth analysis on the complex economic models and real-world case studies driving this transformation, the resources at [www.rasitdinc.com] (<https://www.rasitdinc.com>) provide expert commentary and a wealth of professional insight.

References El Arab, R. A., Al Moosa, O. A., et al. (2025). Systematic review of cost effectiveness and budget impact of artificial intelligence in healthcare. *npj Digital Medicine*, 8(1), 548. *Sahni, N., Stein, G., Zemmel, R., & Cutler, D. M. (2023). The Potential Impact of Artificial Intelligence on Healthcare Spending* (NBER Working Paper No. 30857).* National Bureau of Economic Research.
