

# Is AI Better at Detecting Fractures? A Deep Dive into Diagnostic Accuracy

Rasit Dinc

*Rasit Dinc Digital Health & AI Research*

Published: June 9, 2024 | Medical Imaging AI

DOI: [10.5281/zenodo.17997083](https://doi.org/10.5281/zenodo.17997083)

---

## Abstract

The integration of Artificial Intelligence AI into medical diagnostics is rapidly transforming healthcare, with one of the most promising applications being ...

The integration of Artificial Intelligence (AI) into medical diagnostics is rapidly transforming healthcare, with one of the most promising applications being the automated detection of fractures from plain radiographs. The question is no longer *if* AI can detect fractures, but *how well* it performs compared to the human eye. For professionals and the general public alike, understanding the current state of this technology is crucial to appreciating the future of digital health.

## The Promise of Algorithmic Precision

Fracture detection is a high-volume, time-sensitive task in emergency departments and primary care settings. Human error, fatigue, and the sheer volume of images can lead to missed or delayed diagnoses, particularly in subtle or non-displaced fractures. AI, specifically deep learning models like Convolutional Neural Networks (CNNs), offers a compelling solution: a tireless, objective second opinion.

Recent systematic reviews and meta-analyses have provided robust data on AI's diagnostic performance. A comprehensive review published in *Clinical Radiology* summarized the findings from multiple studies, revealing a high degree of accuracy for AI algorithms. The pooled data showed that AI achieved a **sensitivity and specificity of over 90%** in detecting fractures. The Area Under the Summary Receiver Operating Characteristic (AUSROC) curve for AI was notably high at **0.968** (95% CI: 0.949–0.981).

## AI vs. The Clinician: A Head-to-Head Comparison

To answer the central question—is AI *better*?—we must compare these metrics directly to human performance. The same systematic review found that clinicians demonstrated a pooled sensitivity of **84.83%** (95% CI: 77.71%–89.97%) and a pooled specificity of **91.30%** (95% CI: 87.78%–93.87%), resulting in an AUSROC of **0.944** (95% CI: 0.920–0.961).

These figures suggest that, overall, AI algorithms are **comparable** to clinicians in diagnostic accuracy. However, a deeper analysis reveals important nuances:

1. **Sensitivity:** AI often shows a slight edge in sensitivity, meaning it is marginally better at correctly identifying a fracture when one is present. This is particularly valuable in high-stakes, high-volume environments where minimizing false negatives is critical. 2. **Specificity:** The review noted that radiologists were, in fact, **more specific than AI overall** (AI to radiologist ratio = 0.961;  $p=0.01$ ). Higher specificity means fewer false positives—the AI is slightly more prone to flagging a non-fracture as a potential fracture than a human expert. 3. **Subgroup Performance:** Differences emerged in specific patient populations, such as AI showing higher sensitivity in pediatric patients but slightly lower sensitivity for hip fractures compared to human experts.

Crucially, the conclusion from the academic literature is that AI did **not outperform radiologists** in any of the primary analyses. Instead, the technology functions best as a powerful, highly accurate **assistive tool** that can reduce workload, prioritize critical cases, and serve as a reliable second check.

## **Implementation, Validation, and Augmented Intelligence**

---

The successful deployment of AI extends beyond accuracy, requiring seamless integration into clinical workflows, typically as a **triage tool** to flag urgent cases or as a **concurrent reader** to highlight potential sites. This triage function is vital in trauma centers, significantly reducing turnaround time for critical reports and contributing to better patient outcomes and reduced healthcare costs.

However, the path to widespread adoption is complex. AI models are medical devices requiring rigorous validation to demonstrate **generalizability** across diverse patient populations and imaging equipment. Furthermore, the need for **explainable AI (XAI)** is paramount to move past "black box" decision-making and build clinician confidence. The quality of AI performance is heavily dependent on the quality and diversity of its training data, a challenge the academic community continues to address.

The true value of AI in this domain lies not in replacement, but in creating a synergistic partnership—often termed **Augmented Intelligence**. This collaboration, where the algorithm handles the high-volume screening and the clinician applies expert judgment to complex cases, has been shown to improve both the speed and consistency of diagnosis.

For more in-depth analysis on this topic, including the ethical and implementation challenges of integrating AI into clinical practice, the resources at [\[www.rasitdinc.com\]](http://www.rasitdinc.com)(<https://www.rasitdinc.com>) provide expert commentary and a wealth of professional insight into the digital health landscape.

## **Conclusion**

---

Is AI better at detecting fractures? The current evidence suggests a more

nuanced answer: **AI is highly accurate and comparable to human clinicians, but not definitively superior.** It excels as a tool for augmenting human capabilities, offering a consistent, high-sensitivity check that can significantly improve workflow and patient safety. As the technology matures and training datasets become more robust, the gap between human and machine performance will continue to narrow, solidifying AI's role as an indispensable partner in orthopedic radiology. The future of fracture detection is a collaborative one, where the precision of the algorithm meets the wisdom of the clinician.

---

**Rasit Dinc Digital Health & AI Research**

<https://rasitdinc.com>

© 2024 Rasit Dinc