

How Does the FDA Evaluate AI Software as a Medical Device?

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: June 6, 2016 | FDA Regulation and Compliance

DOI: [10.5281/zenodo.17999197](https://doi.org/10.5281/zenodo.17999197)

Abstract

Artificial intelligence (AI) and machine learning (ML) are no longer concepts confined to science fiction; they are rapidly becoming integral components of m...

How Does the FDA Evaluate AI Software as a Medical Device?

Author: Rasit Dinc

Introduction

Artificial intelligence (AI) and machine learning (ML) are no longer concepts confined to science fiction; they are rapidly becoming integral components of modern healthcare delivery. From diagnostic imaging analysis to personalized treatment planning, AI-powered software is demonstrating immense potential to enhance clinical decision-making, improve patient outcomes, and streamline healthcare operations. However, with this great potential comes significant responsibility. As these sophisticated algorithms are increasingly used in clinical settings, ensuring their safety and effectiveness is a paramount concern. This has led to a critical question for developers, clinicians, and regulators alike: How does the U.S. Food and Drug Administration (FDA) evaluate AI software as a medical device (SaMD)?

The FDA, traditionally tasked with regulating physical medical devices, has been proactively developing a new regulatory paradigm to address the unique challenges posed by adaptive and continuously learning AI/ML algorithms. This article will provide an overview of the FDA's evolving framework for the evaluation of AI/ML-based SaMD, focusing on the key principles and pathways that guide the agency's approach.

A Shift in Regulatory Thinking: The Total Product Lifecycle Approach

The FDA's traditional approach to medical device regulation was primarily designed for hardware-based devices with static functionalities. However, the

very nature of AI/ML-based SaMD, particularly its ability to learn and adapt from real-world data, necessitates a more dynamic and holistic regulatory approach. In response, the FDA has championed a **Total Product Lifecycle (TPLC)** approach that encompasses the entire lifespan of the device, from pre-market development to post-market performance monitoring.

This TPLC-based framework is outlined in the agency's landmark 2021 publication, the "Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device Action Plan" [1]. This plan details a multi-pronged strategy to ensure the safety and effectiveness of AI/ML SaMD while fostering innovation. The core of this strategy is a commitment to providing reasonable assurance that these devices are safe and effective throughout their lifecycle.

Key Pillars of the FDA's AI/ML SaMD Regulatory Framework

The FDA's evaluation of AI/ML SaMD is built upon several key pillars, designed to provide a robust and transparent regulatory process. These include a risk-based classification system, a focus on good machine learning practices, and a novel approach to managing post-market modifications.

Risk-Based Classification

Similar to other medical devices, AI/ML SaMD is subject to a risk-based classification that determines the level of regulatory scrutiny required. The three main premarket pathways are:

Premarket Clearance (510(k)): For devices that are substantially equivalent to a legally marketed device. **De Novo Classification:** For novel, low-to-moderate risk devices without a predicate. **Premarket Approval (PMA):** The most stringent pathway, for high-risk devices that are life-supporting or life-sustaining.

The FDA's assessment of risk considers the significance of the information provided by the SaMD to the healthcare decision, as well as the state of the patient's condition [2].

Good Machine Learning Practice (GMLP)

*The FDA, in collaboration with international partners like Health Canada and the UK's Medicines and Healthcare products Regulatory Agency (MHRA), has identified ten guiding principles for **Good Machine Learning Practice (GMLP)** [3]. These principles are not prescriptive but are intended to promote the development of safe, effective, and high-quality AI/ML medical devices. Key GMLP principles include:*

Data Quality and Representativeness: Emphasizing the importance of using high-quality, clinically relevant, and representative data for model training and testing. **Model Transparency and Interpretability:** Encouraging the development of models where the logic and outputs can be understood. **Robust Performance Monitoring:** Highlighting the need for continuous monitoring of the model's performance in real-world settings.

Predetermined Change Control Plan (PCCP)

Perhaps the most innovative aspect of the FDA's framework is the concept of a **Predetermined Change Control Plan (PCCP)**. A PCCP is a plan that a manufacturer submits to the FDA as part of a premarket submission. It describes the specific, anticipated modifications to an AI/ML SaMD—such as changes to the algorithm or its performance—and the methodology for implementing and validating those changes in a controlled manner.

If a PCCP is approved by the FDA, it allows the manufacturer to implement the specified changes without needing to submit a new premarket submission for each modification [4]. This provides a streamlined regulatory pathway for iterative improvements, which is crucial for the evolution of AI/ML technologies, while ensuring that the changes are made within a pre-defined and validated scope.

The Future of AI/ML SaMD Regulation

The FDA's regulatory framework for AI/ML SaMD is a work in progress, continuously evolving to keep pace with the rapid advancements in the field. The agency is actively seeking feedback from stakeholders and is committed to fostering a regulatory environment that supports innovation while safeguarding public health. The recent publication of draft guidance on lifecycle management and marketing submission recommendations for AI-enabled devices further demonstrates the FDA's commitment to providing clarity and transparency to the industry [5].

Conclusion

The FDA's evaluation of AI software as a medical device is a complex and multifaceted process. By embracing a TPLC approach, promoting GMLP, and introducing innovative concepts like the PCCP, the agency is striving to create a regulatory framework that is both rigorous and flexible. As AI and ML continue to transform healthcare, the FDA's role in ensuring the safety and effectiveness of these powerful technologies will become increasingly vital. Health professionals can expect to see a continued emphasis on transparency, real-world performance monitoring, and a collaborative approach between regulators, developers, and the clinical community to unlock the full potential of AI in medicine.
