

How Does AI Support Asynchronous Telemedicine?

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: March 9, 2019 | Telemedicine and Digital Health

[DOI: 10.5281/zenodo.1799884](https://doi.org/10.5281/zenodo.1799884)

Abstract

Asynchronous telemedicine, a method of exchanging health information between a patient and a healthcare provider without real-time interaction, is rapidly be...

How Does AI Support Asynchronous Telemedicine?

Author: Rasit Dinc

Introduction

Asynchronous telemedicine, a method of exchanging health information between a patient and a healthcare provider without real-time interaction, is rapidly becoming a cornerstone of modern healthcare delivery. This store-and-forward model, where patients can send messages, images, or videos for later review by a clinician, offers significant advantages in terms of convenience, accessibility, and efficiency [1]. The integration of Artificial Intelligence (AI) into this asynchronous framework is further revolutionizing the landscape of remote care, promising to enhance diagnostic accuracy, streamline workflows, and improve patient outcomes. This article explores the multifaceted ways in which AI is supporting and transforming asynchronous telemedicine, drawing upon recent academic research to provide a comprehensive overview for health professionals.

AI-Powered Triage and Prioritization

One of the most significant challenges in asynchronous telemedicine is managing the influx of patient messages and identifying urgent cases that require immediate attention. AI algorithms can analyze the content of these messages, including the language used and the symptoms described, to automatically triage and prioritize them. By flagging messages that indicate potentially serious conditions, AI can help ensure that patients with the most pressing needs receive timely care, while routine inquiries are handled in a more structured manner. This not only improves patient safety but also optimizes the use of clinicians' time and resources.

Enhancing Patient Education with AI Chatbots

The use of AI-powered chatbots is another key area where AI is making a substantial impact on asynchronous telemedicine. These chatbots can provide patients with instant responses to their questions, offer educational resources about their conditions, and guide them through self-care protocols. A recent study published in the *Journal of Medical Internet Research* evaluated the performance of a GPT-4 based chatbot in responding to asynchronous text-based messages from cancer patients [1]. The study found that in patient education scenarios, the chatbot's responses were often more comprehensive than those of physicians, covering a broader range of information that patients might find useful. This suggests that AI chatbots can serve as a valuable supplementary tool for patient education, freeing up clinicians to focus on more complex aspects of care.

AI in Clinical Decision Support

Beyond patient education, AI is also being developed to provide clinical decision support to healthcare providers. By analyzing patient-submitted data, including text, images, and other clinical information, AI models can assist in formulating differential diagnoses, recommending appropriate tests, and suggesting evidence-based treatment plans. However, it is crucial to acknowledge the limitations of AI in this domain. The same study that highlighted the benefits of AI in patient education also found that the chatbot's accuracy was lower than that of physicians in medical decision-making scenarios, particularly in complex cases requiring nuanced clinical judgment [1]. This underscores the importance of maintaining a "human-in-the-loop" approach, where AI serves as an assistant to the clinician rather than a replacement.

Automating Administrative Tasks

Asynchronous telemedicine generates a significant amount of administrative work, from scheduling follow-up appointments to managing billing and documentation. AI can automate many of these repetitive tasks, reducing the administrative burden on healthcare providers and allowing them to dedicate more time to direct patient care. For example, AI-powered systems can automatically extract relevant information from patient messages to update electronic health records, schedule appointments based on the urgency of the case, and even generate billing codes for the services provided.

Challenges and Future Directions

Despite the immense potential of AI in asynchronous telemedicine, several challenges must be addressed to ensure its safe and effective implementation. These include concerns about data privacy and security, the need for robust regulatory frameworks, and the ethical implications of using AI in healthcare. Furthermore, the development of more advanced AI models that can better understand the nuances of clinical language and context is an ongoing area of research. Future directions include the use of federated learning to train AI models on data from multiple institutions without compromising patient privacy, as well as the development of explainable AI (XAI) systems that can

provide transparent and understandable justifications for their recommendations.

Conclusion

In conclusion, AI is poised to play a transformative role in the evolution of asynchronous telemedicine. From triaging patient messages and providing on-demand education to assisting with clinical decision-making and automating administrative tasks, AI offers a wide range of benefits for both patients and healthcare providers. However, it is essential to approach the integration of AI into clinical practice with a clear understanding of its limitations and a commitment to ensuring patient safety and data privacy. By embracing a collaborative model where AI supports and augments the expertise of human clinicians, we can unlock the full potential of this powerful technology to create a more efficient, accessible, and effective healthcare system for all.

References

[1] Bai, X., Wang, S., Zhao, Y., Feng, M., Ma, W., & Liu, X. (2025). Application of AI Chatbot in Responding to Asynchronous Text-Based Messages From Patients With Cancer: Comparative Study. *Journal of Medical Internet Research*, 27(1), e67462. <https://pmc.ncbi.nlm.nih.gov/articles/PMC12138309/>
