

# How Does AI Improve Triage Decisions in Emergency Departments?

Rasit Dinc

*Rasit Dinc Digital Health & AI Research*

Published: November 27, 2015 | AI in Clinical Decision Support

DOI: [10.5281/zenodo.17999269](https://doi.org/10.5281/zenodo.17999269)

---

## Abstract

Emergency Departments (EDs) are the frontline of healthcare, operating under immense pressure to provide immediate care to patients with a wide spectrum of m...

# How Does AI Improve Triage Decisions in Emergency Departments?

**Author:** Rasit Dinc

## Introduction

Emergency Departments (EDs) are the frontline of healthcare, operating under immense pressure to provide immediate care to patients with a wide spectrum of medical conditions. The ever-increasing patient volume, coupled with resource constraints, often leads to overcrowding, which can compromise patient safety and care quality [1]. Traditional triage systems, while structured, are often subjective and can be inconsistent, especially during peak hours or mass casualty events [2]. The integration of Artificial Intelligence (AI) and Machine Learning (ML) offers a promising solution to these challenges, with the potential to revolutionize the triage process by enhancing decision-making, improving efficiency, and optimizing resource allocation [3].

## The Role of AI in Triage: Enhancing Accuracy and Efficiency

AI-driven triage systems leverage sophisticated algorithms to analyze vast amounts of patient data in real-time, including vital signs, symptoms, medical history, and demographics. This enables a more objective and consistent assessment of patient acuity compared to traditional methods [4]. Machine learning models, a subset of AI, can be trained on historical patient data to identify subtle patterns and predict the likelihood of critical outcomes, such as the need for hospital admission or intensive care [5].

One of the primary advantages of AI in triage is its ability to process and

interpret unstructured data, such as clinician notes and patient-reported symptoms, through Natural Language Processing (NLP). This allows for a more comprehensive and nuanced understanding of a patient's condition, leading to more accurate and timely triage decisions [6]. Studies have shown that ML models consistently demonstrate superior discrimination abilities compared to conventional triage systems, with a significant reduction in both under-triage and over-triage rates [7].

## **Benefits of AI-Driven Triage**

---

The implementation of AI-driven triage systems in EDs has demonstrated a range of benefits, leading to improved patient outcomes and operational efficiencies.

### ***Improved Patient Prioritization and Reduced Wait Times***

By automating the initial assessment and providing an objective risk score, AI can help clinicians prioritize patients more effectively, ensuring that those with the most critical needs receive immediate attention. This has been shown to significantly reduce waiting times for high-risk patients, leading to a notable decrease in adverse outcomes [8].

### ***Optimized Resource Allocation***

AI-powered tools can assist in managing ED resources more efficiently by predicting patient flow and identifying potential bottlenecks. During mass casualty incidents or periods of high patient volume, AI can optimize the distribution of staff, beds, and equipment, enabling EDs to manage the surge more effectively [9].

### ***Enhanced Decision Support for Clinicians***

AI-driven triage systems can act as a valuable decision support tool for clinicians, reducing cognitive load and allowing them to focus on more complex cases. By providing real-time insights and risk assessments, these systems can help alleviate burnout and enhance job satisfaction, ultimately benefiting the quality of patient care [10].

## **Challenges and Ethical Considerations**

---

Despite the significant potential of AI in triage, there are several challenges and ethical considerations that need to be addressed for its widespread adoption.

### ***Data Quality and Algorithmic Bias***

The performance of AI models is heavily dependent on the quality and representativeness of the data they are trained on. Biases present in historical data, such as racial or gender disparities, can be amplified by AI algorithms, leading to inequitable care [11]. Ensuring data quality and mitigating algorithmic bias are critical steps in the development and implementation of fair and ethical AI systems.

### ***Transparency and Trust***

The "black box" nature of some complex AI models can be a barrier to clinician trust and adoption. It is essential to develop transparent and interpretable AI systems that allow clinicians to understand the rationale behind the recommendations. Building trust in AI requires a collaborative approach involving clinicians, data scientists, and ethicists [12].

## **The Future of AI in Emergency Triage**

---

The future of AI in emergency triage is promising, with ongoing research and development focused on refining algorithms, integrating new data sources, and addressing ethical challenges. The integration of wearable devices and remote monitoring technologies will provide a continuous stream of real-time data, further enhancing the predictive capabilities of AI models [13].

Continuous research and clinical trials are crucial to validate the safety and efficacy of AI systems across diverse patient populations and clinical settings. The development of robust ethical frameworks and regulatory guidelines will be essential to ensure the responsible and equitable implementation of AI in emergency medicine.

## **Conclusion**

---

AI-driven triage systems have the potential to transform emergency care by improving the accuracy and efficiency of patient prioritization, optimizing resource allocation, and providing valuable decision support for clinicians. While there are challenges to overcome, the continued advancement of AI technologies, coupled with a commitment to ethical and responsible implementation, will undoubtedly play a pivotal role in shaping the future of emergency medicine and improving outcomes for patients worldwide.

## **References**

---

- [1] Use of Artificial Intelligence in Triage in Hospital Emergency Departments: A Scoping Review. (2024). *Cureus*, 16(5), e59906. <https://doi.org/10.7759/cureus.59906>
- [2] AI-driven triage in emergency departments: A review of benefits, challenges, and future directions. (2025). *International Journal of Medical Informatics*, 197, 105838. <https://doi.org/10.1016/j.ijmedinf.2025.105838>
- [3] Can Application of Artificial Intelligence Improve ED Triage Performance? (n.d.). *American Academy of Emergency Medicine*. Retrieved from <https://www.aaem.org/statements/ai-ed-triage-performance/>
- [4] Impact of Artificial Intelligence-Based Triage Decision Support on ED Operations. (2025). *NEJM AI*, 2(1). <https://doi.org/10.1056/AIo2400296>
- [5] Machine learning in diagnostic support in medical emergency departments. (2024). *Scientific Reports*, 14(1), 13857. <https://doi.org/10.1038/s41598-024-66837-w>
- [6] Artificial Intelligence for Emergency Care Triage. (2024). *JAMA Network Open*, 7(5), e248391. <https://doi.org/10.1001/jamanetworkopen.2024.8391>
- [7] Machine learning methods applied to triage in emergency departments: a

systematic review. (2022). *Journal of Biomedical Informatics*, 125, 103966. <https://doi.org/10.1016/j.jbi.2021.103966>

[8] ER Triage With AI- Healthcare AI. (2024, July 21). *Aidoc*. Retrieved from <https://www.aidoc.com/learn/blog/er-triage-with-ai/>

[9] A foundational triage system for improving accuracy in emergency departments. (2025). *Communications Medicine*, 5(1), 1-10. <https://doi.org/10.1038/s43856-025-01052-w>

[10] Clinical Impact of Artificial Intelligence-Based Triage Systems in Emergency Departments: A Systematic Review. (2025). *Cureus*, 17(1), e63105. <https://doi.org/10.7759/cureus.63105>

[11] Safety and accuracy of AI in triaging patients in the emergency department. (2025). *BMC Emergency Medicine*, 25(1), 1-8. <https://doi.org/10.1186/s12245-025-01069-x>

[12] A META-ANALYSIS OF DIAGNOSTIC ACCURACY, EFFICIENCY, AND PATIENT OUTCOMES OF AI-DRIVEN TRIAGE IN EMERGENCY DEPARTMENTS. (2025). *Journal of Pharmaceutical Technology and Clinical Pharmacy*, 1(1), 1-10.

[13] Machine Learning in Medical Triage: A Predictive Model for Patient Disposition from the Emergency Department. (2024). *Applied Sciences*, 14(15), 6623. <https://doi.org/10.3390/app14156623>

---

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2015 Rasit Dinc