

How Does AI Improve Quality Control in Medical Imaging?

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: May 1, 2017 | AI in Medical Imaging and Diagnostics

DOI: [10.5281/zenodo.17999044](https://doi.org/10.5281/zenodo.17999044)

Abstract

In the realm of modern medicine, medical imaging stands as a cornerstone of diagnosis, treatment planning, and disease monitoring. The quality of medical ima...

How Does AI Improve Quality Control in Medical Imaging?

Author: Rasit Dinc

Introduction

In the realm of modern medicine, medical imaging stands as a cornerstone of diagnosis, treatment planning, and disease monitoring. The quality of medical images, whether from Magnetic Resonance Imaging (MRI), Computed Tomography (CT), or other modalities, is paramount to accurate clinical interpretation. However, ensuring consistent, high-quality images presents a significant challenge. Manual quality control (QC) processes are often time-consuming, subjective, and prone to inter-observer variability. The advent of Artificial Intelligence (AI) has introduced a paradigm shift, offering powerful new tools to automate and enhance quality control in medical imaging, thereby improving diagnostic accuracy and workflow efficiency [1].

AI-Powered Image Acquisition and Reconstruction

One of the most significant impacts of AI on medical imaging quality control is its ability to optimize the image acquisition process itself. AI algorithms can analyze incoming data in real-time and adjust imaging parameters to minimize noise and artifacts, ensuring high-quality images are captured from the outset. For instance, deep learning models can be trained to detect motion artifacts during an MRI scan and prospectively correct for them, reducing the need for costly and time-consuming rescans [2].

Furthermore, AI is revolutionizing image reconstruction. Generative Adversarial Networks (GANs), for example, have shown remarkable success in translating images from one modality to another (e.g., generating a CT-like

image from an MRI scan) and in removing noise and artifacts from reconstructed images. A notable example is the MedGAN framework, which utilizes a novel generator architecture and a combination of adversarial and non-adversarial losses to enhance the sharpness and quality of translated medical images, outperforming existing methods in tasks such as PET-CT translation and MR motion artifact correction [3].

Automated Image Quality Assessment

Traditionally, the assessment of medical image quality has been a subjective task performed by radiologists and technologists. This process is not only labor-intensive but also susceptible to variability. AI, particularly deep learning models like Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), offers an objective and automated solution. These models can be trained on large datasets of medical images labeled by experts for their diagnostic quality. Once trained, they can rapidly and consistently assess the quality of new images, flagging those that are suboptimal for review or re-acquisition [4].

This automated quality assessment can be seamlessly integrated into the clinical workflow. For example, an AI-powered QC tool could automatically check the quality of a chest X-ray immediately after acquisition. If the image is deemed non-diagnostic due to poor patient positioning or exposure, the technologist can be alerted to retake the image before the patient leaves the department. This not only improves the overall quality of care but also enhances departmental efficiency.

Enhancing Diagnostic Accuracy and Consistency

The ultimate goal of quality control in medical imaging is to ensure that images are of sufficient quality for accurate diagnosis. By improving image quality at the source and providing objective quality assessment, AI directly contributes to this goal. AI-denoised or super-resolution images can reveal subtle pathological details that might be obscured in the original images, leading to earlier and more accurate diagnoses. For example, AI algorithms have been shown to improve the detection of small lung nodules in CT scans and to enhance the visibility of fine details in retinal images, aiding in the early diagnosis of diabetic retinopathy [5].

Moreover, AI can help to standardize image quality across different imaging systems and institutions. By providing a consistent and objective measure of image quality, AI can help to ensure that a patient receives the same high-quality imaging regardless of where their scan is performed. This is crucial for large-scale clinical trials and for the development of robust and generalizable AI-based diagnostic tools.

Challenges and Future Directions

Despite the immense potential of AI in medical imaging quality control, several challenges remain. These include the need for large, high-quality, and well-annotated datasets for training AI models, the interpretability of AI models (the so-called "black box" problem), and the regulatory and ethical

considerations surrounding the use of AI in clinical practice. Future research will likely focus on developing more robust and explainable AI models, as well as on establishing standardized protocols for the validation and implementation of AI-based QC tools in the clinical workflow.

Conclusion

Artificial Intelligence is poised to revolutionize quality control in medical imaging. From optimizing image acquisition and reconstruction to automating quality assessment and enhancing diagnostic accuracy, AI offers a powerful suite of tools to improve the quality, consistency, and efficiency of medical imaging services. While challenges remain, the continued development and integration of AI into the clinical workflow will undoubtedly lead to better patient outcomes and a more efficient healthcare system.

References

- [1] Pinto-Coelho, L. (2023). How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. *Bioengineering (Basel)*, 10(12), 1435. <https://pmc.ncbi.nlm.nih.gov/articles/PMC10740686/>
- [2] Zhang, X., et al. (2025). A deep learning method for medical image quality assessment. *Optics and Laser Technology*, 169, 109752.
- [3] Armanious, K., et al. (2020). MedGAN: Medical Image-to-Image Translation Using a GAN-Based Framework. *IEEE Transactions on Medical Imaging*, 39(10), 3103-3113.
- [4] Jeong, H. K., et al. (2024). Image Quality Assessment Using Convolutional Neural Networks. *Journal of Investigative Dermatology Innovations*, 1(2), 100032.
- [5] Cong, Z., et al. (2024). A novel Deep-Learning- driven system for clinical image quality assessment of whole-body 18 F-FDG PET/CT. *Journal of Nuclear Medicine*, 65(supplement 2), 242003.