

How Does AI Improve Pediatric Medical Imaging Interpretation?

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: June 30, 2016 | AI in Medical Imaging and Diagnostics

DOI: [10.5281/zenodo.17999183](https://doi.org/10.5281/zenodo.17999183)

Abstract

Artificial intelligence (AI) is rapidly transforming the landscape of healthcare, and pediatric radiology is no exception. While AI's application in adult me...

How Does AI Improve Pediatric Medical Imaging Interpretation?

Author: Rasit Dinc

Artificial intelligence (AI) is rapidly transforming the landscape of healthcare, and pediatric radiology is no exception. While AI's application in adult medical imaging has been extensively explored, its potential in pediatrics is a growing field of interest. The unique challenges of pediatric imaging, stemming from the diverse anatomy and physiology across different age groups, make AI a promising tool to enhance diagnostic accuracy, improve efficiency, and ultimately, deliver better care to young patients. This article delves into the various ways AI is revolutionizing pediatric medical imaging interpretation, from clinical decision support to advanced image analysis.

The Unique Challenges of Pediatric Imaging

Pediatric radiology presents a distinct set of challenges compared to adult imaging. Children's bodies are in a constant state of growth and development, leading to wide variations in normal anatomical findings. This variability makes it difficult to establish a standardized baseline for interpretation. Furthermore, obtaining high-quality images from children can be challenging due to their inability to remain still for extended periods, leading to motion artifacts. There is also a critical need to minimize radiation exposure in children, making low-dose imaging techniques essential. These factors underscore the need for advanced tools that can assist radiologists in navigating the complexities of pediatric imaging.

AI-Powered Clinical Decision Support

One of the most significant contributions of AI in pediatric radiology is in the

realm of clinical decision support (CDS). AI-powered CDS tools can analyze a patient's electronic health record (EHR), cross-reference it with national referral guidelines, and suggest the most appropriate imaging modality and protocol. This not only helps in reducing unnecessary or inappropriate imaging procedures but also ensures that the most relevant clinical information is available to the radiologist. For instance, an AI-assisted CDS can help in avoiding a CT scan for a child with recurrent urinary tract infections and instead recommend a renal ultrasound, thereby minimizing radiation exposure [1].

Enhancing Image Acquisition and Post-Processing

AI algorithms are making significant strides in improving image acquisition and post-processing techniques. Deep learning models can reconstruct high-quality images from low-dose CT scans, effectively reducing radiation exposure without compromising diagnostic quality [2]. This is particularly crucial in the pediatric population, where the risks associated with ionizing radiation are a major concern. AI can also help in reducing MRI scan times, which is beneficial for children who have difficulty staying still. Furthermore, AI-powered tools can automatically correct for motion artifacts, leading to clearer and more interpretable images.

Quantitative Analysis and Prognostication

AI excels at performing quantitative analysis, a task that is often time-consuming and prone to inter-observer variability when done manually. In pediatric imaging, AI is being used for automated bone age assessment, measuring the volume of pneumothoraces, and segmenting brain tissue to assess hydrocephalus [1]. These automated measurements provide objective data that can aid in treatment planning and monitoring. Beyond quantification, AI is also being used for prognostication. By analyzing imaging data in conjunction with clinical information, AI models can predict the likelihood of certain outcomes, such as the neurological development in children with specific brain abnormalities.

Improving Image Interpretation

The core task of a radiologist is image interpretation, and AI is proving to be a powerful assistant in this domain. AI algorithms, particularly deep learning models, can be trained to detect and classify a wide range of abnormalities in pediatric images with high accuracy. Studies have shown the feasibility of AI in detecting conditions such as pneumonia, developmental dysplasia of the hip, and wrist fractures in children [1, 3]. In pediatric neuro-oncology, AI has demonstrated the ability to differentiate between different types of brain tumors, which can have a significant impact on treatment planning [1]. By flagging potential abnormalities, AI can help radiologists prioritize their workflow and reduce the chances of missing subtle findings.

The Road Ahead

The integration of AI into pediatric medical imaging is still in its early stages, but the potential is immense. As AI technology continues to evolve, we can

expect to see more sophisticated applications that will further enhance the capabilities of pediatric radiologists. However, it is crucial to address the challenges associated with AI, such as the need for large, high-quality datasets for training, the potential for bias in algorithms, and the ethical and legal implications of using AI in clinical practice. By navigating these challenges thoughtfully, we can harness the full potential of AI to improve the lives of our youngest patients.

References

- [1] Davendralingam, N., Sebire, N. J., Arthurs, O. J., & Shelmerdine, S. C. (2020). Artificial intelligence in paediatric radiology: Future opportunities. *The British journal of radiology*, 94(1117), 20200975. <https://doi.org/10.1259/bjr.20200975>
- [2] Sammer, M. B. K., Akbari, Y. S., Barth, R. A., Blumer, S. L., & Dillman, J. R. (2023). Use of Artificial Intelligence in Radiology: Impact on Pediatric Patients, a White Paper From the ACR Pediatric AI Workgroup. *Journal of the American College of Radiology*, 20(8), 730-737. <https://doi.org/10.1016/j.jacr.2023.04.009>
- [3] Kelly, B. S., Clifford, S. M., Judge, C. S., Bollard, S. M., Healy, G. M., Hughes, H., Colleran, G. C., Rod, J. E., Lee, E. H., Prolo, L. M., Yeom, K. W., Lawlor, A., & Killeen, R. P. (2024). A survey of Paediatric Radiology Artificial Intelligence. *medRxiv*. <https://doi.org/10.1101/2024.09.19.24313885>
