

How Does AI Improve Early Cancer Detection?

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: June 8, 2016 | AI in Oncology

DOI: [10.5281/zenodo.17999195](https://doi.org/10.5281/zenodo.17999195)

Abstract

Early diagnosis is a critical factor in the successful treatment of cancer. The earlier a cancer is detected, the more likely it is that treatment will be effective...

How Does AI Improve Early Cancer Detection?

Author: Rasit Dinc

Introduction

Early diagnosis is a critical factor in the successful treatment of cancer. The earlier a cancer is detected, the more likely it is that treatment will be effective. In recent years, artificial intelligence (AI) has emerged as a powerful tool with the potential to revolutionize early cancer detection. By leveraging machine learning and deep learning algorithms, AI can analyze vast amounts of medical data to identify patterns and anomalies that may be missed by the human eye. This article explores the various ways in which AI is improving early cancer detection, from risk stratification to automated diagnosis and recurrence prediction.

The Transformative Role of AI in Early Cancer Detection

AI is being applied across the entire cancer care continuum, with a significant impact on early detection. Here are some of the key areas where AI is making a difference:

Risk-Stratified Screening

One of the major challenges in cancer screening is identifying individuals who are at a high risk of developing the disease. AI models can analyze electronic health records (EHRs), medical images, and other clinical data to predict an individual's risk of developing cancer. This allows for more targeted and effective screening programs, ensuring that those who are most at risk receive the attention they need. For example, AI models have been developed to predict the risk of lung cancer with greater accuracy than traditional methods, helping to identify candidates for low-dose CT screening [1].

Symptomatic Patient Triage

General practitioners (GPs) play a crucial role in identifying patients with potential cancer symptoms and referring them for further investigation. AI-powered decision support tools can assist GPs in this process by analyzing a patient's symptoms and medical history to provide a risk score for cancer. This can help to ensure that patients with high-risk symptoms are referred promptly, while reducing unnecessary referrals for those with low-risk symptoms.

Diagnostic Workflow Triage

The increasing demand for diagnostic services, particularly in radiology and pathology, has put a strain on healthcare systems. AI can help to alleviate this pressure by triaging diagnostic tests and prioritizing cases that require urgent attention from a specialist. For example, AI algorithms can analyze mammograms to identify those that are likely to be normal, allowing radiologists to focus their attention on more complex cases [2]. A recent study on the real-world implementation of AI in mammography screening found that AI-supported double reading was associated with a higher breast cancer detection rate without negatively affecting the recall rate [5].

Automated Detection and Classification

Deep learning models, particularly convolutional neural networks (CNNs), have shown remarkable success in automatically detecting and classifying cancer from medical images. These models can be trained on large datasets of images to recognize the subtle features of cancerous tissue. For example, AI has been used to detect lung cancer from CT scans and breast cancer from mammograms with an accuracy that is comparable to, or even exceeds, that of human experts [3, 4].

Multi-Omic Data Analysis

Cancer is a complex disease that is driven by a variety of genetic and molecular factors. Multi-omic data, which includes information from genomics, transcriptomics, and proteomics, can provide a more comprehensive understanding of a patient's tumor. AI algorithms are well-suited to analyzing this type of high-dimensional data, and can be used to identify novel biomarkers for early cancer detection and to predict a patient's response to treatment.

Early Detection of Recurrence

Even after successful treatment, there is a risk that cancer may recur. AI models can be used to predict the likelihood of recurrence based on a patient's clinical and pathological data. This can help to identify patients who may benefit from more intensive follow-up and surveillance, allowing for the early detection and treatment of any recurrent disease.

Challenges and Future Directions

Despite the enormous potential of AI in early cancer detection, there are still a number of challenges that need to be addressed. These include the need for

large, high-quality datasets for training and validation, the development of more transparent and interpretable AI models, and the integration of AI into existing clinical workflows. Furthermore, there are ethical considerations and issues of data privacy and security that must be carefully managed [6]. However, as the field of AI continues to evolve, it is likely that these challenges will be overcome, and that AI will play an increasingly important role in the fight against cancer.

Conclusion

Artificial intelligence is poised to transform the field of oncology, particularly in the area of early cancer detection. By enabling more accurate risk stratification, more efficient diagnostic workflows, and more precise and automated diagnosis, AI has the potential to significantly improve patient outcomes. As AI technologies continue to mature and become more widely adopted, we can expect to see a future where cancer is detected earlier, treated more effectively, and ultimately, a future with more cancer survivors.

References

- [1] Hunter, B., Hindocha, S., & Lee, R. W. (2022). The Role of Artificial Intelligence in Early Cancer Diagnosis. *Cancers*, 14(6), 1524. <https://doi.org/10.3390/cancers14061524>
- [2] Dembrower, K., Lindholm, P., & Strand, F. (2020). The role of artificial intelligence in breast cancer screening. *Current Opinion in Oncology*, 32(6), 569-575.
- [3] Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reicher, J. J., Peng, L., ... & Shetty, S. (2019). End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. *Nature medicine*, 25(6), 954-961.
- [4] McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Etemadi, M., Grzymala-Busse, J., ... & Shetty, S. (2020). International evaluation of an AI system for breast cancer screening. *Nature*, 577(7788), 89-94.
- [5] Eisemann, N., Bunk, S., Mukama, T., Baltus, H., Elsner, S. A., Gomille, T., ... & Katalinic, A. (2024). Nationwide real-world implementation of AI for cancer detection in population-based mammography screening. *Nature Medicine*, 1-8.
- [6] Tun, H. M., Rahman, H. A., Naing, L., & Malik, O. A. (2025). Artificial intelligence utilization in cancer screening program across ASEAN: a scoping review. *BMC Cancer*, 25(1), 703. <https://doi.org/10.1186/s12885-025-14026-x>