

How Does AI Improve Detection of Lung Nodules on Chest X-rays?

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: January 14, 2018 | AI in Medical Imaging and Diagnostics

DOI: [10.5281/zenodo.17998935](https://doi.org/10.5281/zenodo.17998935)

Abstract

Lung cancer remains a leading cause of cancer-related mortality worldwide, with late-stage diagnosis contributing significantly to poor patient outcomes. Ear...

How Does AI Improve Detection of Lung Nodules on Chest X-rays?

Author: Rasit Dinc

Introduction

Lung cancer remains a leading cause of cancer-related mortality worldwide, with late-stage diagnosis contributing significantly to poor patient outcomes. Early detection is paramount to improving survival rates, and chest X-rays (CXR) are a common initial screening tool. However, the interpretation of CXRs for subtle abnormalities like lung nodules can be challenging, even for experienced radiologists. The advent of artificial intelligence (AI), particularly deep learning algorithms, is revolutionizing medical imaging by offering powerful tools to augment the diagnostic process. This article explores how AI is improving the detection of lung nodules on chest X-rays, examining its performance, benefits, and current limitations.

Enhancing Diagnostic Accuracy with AI

Artificial intelligence algorithms have demonstrated remarkable performance in identifying lung nodules on CXRs, often exceeding the accuracy of human readers. A systematic review published in *Diagnostics* highlighted that AI models can achieve sensitivity rates ranging from 56.4% to 95.7% and specificity rates from 71.9% to 97.5% [1]. The area under the receiver operating characteristic (AUROC) curve, a measure of overall diagnostic accuracy, for these AI systems falls between 0.89 and 0.99, a significant improvement compared to the average radiologist's AUC of 0.81 [1]. This enhanced accuracy is attributed to the AI's ability to learn and recognize complex patterns from vast datasets of medical images, enabling it to spot subtle nodules that might be missed by the human eye.

AI excels in detecting larger (>2 cm) and solid nodules, and it has shown better performance with calcified nodules [1]. This is a critical advantage, as the characteristics of a nodule can be indicative of its malignancy. By providing a more consistent and objective evaluation, AI can help standardize the interpretation of CXRs and reduce inter-reader variability among radiologists.

Expanding the Scope of Early Detection

One of the most significant contributions of AI in this domain is its ability to function as an early warning system, even in cases where lung cancer is not initially suspected. A case series by Qure.ai and Hacettepe University, presented at the World Conference on Lung Cancer 2025, revealed that AI could identify potentially malignant pulmonary nodules on routine CXRs ordered for unrelated conditions [2]. This “incidental finding” capability is a game-changer for early detection.

Patients who undergo chest X-rays for reasons other than cancer screening, such as in the emergency room or for pre-operative assessments, can now benefit from this opportunistic screening. The AI acts as a safety net, flagging suspicious findings that might otherwise go unnoticed until symptoms develop and the disease has progressed. This expands the diagnostic funnel beyond the traditional high-risk populations, such as long-term smokers, to a much broader patient base, ultimately increasing the number of lung cancers caught at an early, more treatable stage [2].

The Collaborative Future: AI and Radiologists

It is crucial to understand that AI is not intended to replace radiologists but to serve as a powerful supplementary tool. The most effective approach is a collaborative one, where AI assists radiologists in their diagnostic workflow. Research has shown that a combined AI-radiologist approach improves overall detection rates, particularly for less experienced readers [1]. The AI can act as a “second reader,” drawing the radiologist’s attention to areas of concern and providing quantitative data to support their assessment.

However, AI is not without its limitations. Current models can struggle with detecting certain types of nodules, such as ground-glass opacities (GGOs), and their performance can be lower in specific areas of the lung, like the hilar region [1]. Furthermore, the performance of AI models can vary depending on the datasets they were trained on, highlighting the need for more diverse and standardized training data to ensure their robustness and generalizability across different patient populations and clinical settings.

Conclusion

Artificial intelligence is making a profound impact on the early detection of lung cancer by significantly improving the identification of lung nodules on chest X-rays. With its high accuracy, ability to detect incidental findings, and potential to standardize interpretation, AI is a valuable asset in the fight against this deadly disease. While challenges and limitations remain, the future of lung nodule detection lies in the synergy between human expertise

and artificial intelligence. By embracing this collaborative model, healthcare professionals can enhance their diagnostic capabilities, improve patient outcomes, and ultimately save lives.

References

- [1] Ramli, P. N. M., Aizuddin, A. N., Ahmad, N., Hamid, Z. A., & Ismail, K. I. (2025). A Systematic Review: The Role of Artificial Intelligence in Lung Cancer Screening in Detecting Lung Nodules on Chest X-Rays. *Diagnostics (Basel, Switzerland)*, 15(3), 246. <https://doi.org/10.3390/diagnostics15030246>
- [2] Qure.ai. (2025, September 8). *AI-Powered Chest X-Rays Catch Hidden Lung Cancer Risks — Even When No One's Looking*. Qure.ai. https://www.qure.ai/news_press_coverages/ai-powered-chest-x-rays-catch-hidden-lung-cancer-risks-even-when-no-ones-looking

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2018 Rasit Dinc