

How Does AI Handle Uncertainty in Clinical Decision Making?

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: November 19, 2016 | AI in Clinical Decision Support

DOI: [10.5281/zenodo.17999122](https://doi.org/10.5281/zenodo.17999122)

Abstract

Uncertainty is an inherent and unavoidable aspect of clinical medicine. From ambiguous patient histories to the probabilistic nature of diagnostic tests and ...

How Does AI Handle Uncertainty in Clinical Decision Making?

Author: Rasit Dinc

Introduction

Uncertainty is an inherent and unavoidable aspect of clinical medicine. From ambiguous patient histories to the probabilistic nature of diagnostic tests and treatment outcomes, healthcare professionals constantly navigate a landscape of incomplete information. The ability to effectively manage this uncertainty is a cornerstone of sound clinical judgment. In recent years, the advent of Artificial Intelligence (AI) has introduced powerful new tools that promise to reshape our approach to clinical decision-making, particularly in how we quantify, interpret, and act upon uncertainty.

This article explores the evolving role of AI in managing clinical uncertainty. We will delve into the mechanisms by which AI can help mitigate sources of reducible uncertainty, the sophisticated techniques used for uncertainty quantification, and the development of novel, human-centered AI models that prioritize transparency and safety. By understanding these advancements, healthcare professionals can better appreciate both the potential and the current limitations of integrating AI into their practice.

Mitigating Reducible Uncertainty with AI

A significant portion of clinical uncertainty is not random but stems from systematic issues that can be addressed. A 2024 study by Alli et al. highlights three key areas where AI can make a substantial impact: lack of clinical information, provider competence, and provider bias [1].

Bridging Information Gaps

AI algorithms excel at processing vast amounts of data. They can accelerate scientific discovery by managing large-scale databases and integrating complex biological and clinical variables to generate predictive outputs [1]. For the individual patient, AI-powered tools like scribes can alleviate time constraints during consultations, allowing for more thorough history-taking. Furthermore, some patients may feel more comfortable disclosing sensitive information to an AI, which can lead to more complete and accurate data for decision-making [1].

Enhancing Provider Competence

AI-driven clinical decision support systems can act as a valuable safety net, reducing the potential for human error. For instance, deep neural networks have demonstrated the ability to classify skin cancers from dermoscopic images with an accuracy comparable to that of board-certified dermatologists [1]. By providing a second opinion or flagging potential issues, these tools can augment the skills and knowledge of clinicians, leading to more confident and accurate diagnoses.

Countering Provider Bias

Unconscious biases can subtly influence clinical judgment. AI models, when designed and trained appropriately, can offer recommendations based purely on the data, irrespective of the provider's personal beliefs or heuristics. A notable example is the use of large language models like ChatGPT, which have shown the ability to predict dermatological conditions with similar accuracy across different skin tones, a task where human clinicians have historically shown disparities [1].

The Science of Uncertainty Quantification

Beyond mitigating reducible uncertainty, AI offers sophisticated methods to quantify the uncertainty that remains. This is crucial for building trust in AI systems and for making safe clinical decisions. A comprehensive 2023 review by Seoni et al. found that **Bayesian methods** are the predominant technique for uncertainty quantification in both machine learning and deep learning models applied to healthcare [2].

Bayesian approaches treat model parameters not as fixed values but as probability distributions. This allows the model to express its confidence in a prediction. For example, a Bayesian neural network analyzing a medical image can produce a diagnosis and simultaneously provide a measure of how certain it is about that diagnosis. This is invaluable in high-stakes scenarios, as it can alert the clinician when the model's output should be treated with caution.

The Frontier: Human-Centered, Explainable AI

The black-box nature of many deep learning models is a significant barrier to their adoption in medicine. To address this, researchers are developing new models that are both powerful and interpretable. One such innovation is the **Bayesian Logical Neural Network (BaLONN)**, a novel methodology that

combines the structural explainability of Logical Neural Networks with the uncertainty-modeling capabilities of Bayesian Networks [3].

As described by Ochoa et al. in 2023, BaLONNs are designed to be user-centered. Instead of just providing a recommendation, the model can inform the physician when a given recommendation is uncertain and requires careful human evaluation [3]. This approach fosters a collaborative relationship between the clinician and the AI, where the technology serves as a sophisticated assistant rather than an opaque authority. By testing this methodology on a database for patients with heart failure, the researchers have laid the groundwork for future recommender systems in medicine that are both intelligent and trustworthy [3].

Conclusion

Artificial intelligence is not a panacea for eliminating uncertainty in medicine. Instead, it offers a powerful and multifaceted toolkit for managing it more effectively. From reducing errors and biases to providing sophisticated measures of confidence, AI is poised to augment the decision-making capabilities of healthcare professionals in profound ways. As these technologies continue to evolve, the focus must remain on developing human-centered, explainable, and rigorously validated systems that empower clinicians to provide the best possible care in the face of inherent uncertainty.

References

- [1] Alli, S. R., Hossain, S. Q., Das, S., & Upshur, R. (2024). The Potential of Artificial Intelligence Tools for Reducing Uncertainty in Medicine and Directions for Medical Education. *JMIR Medical Education*, 10, e51446. <https://pmc.ncbi.nlm.nih.gov/articles/PMC11554287/>
- [2] Seoni, S., Jahmunah, V., Salvi, M., Barua, P. D., Molinari, F., & Acharya, U. R. (2023). Application of uncertainty quantification to artificial intelligence in healthcare: A review of last decade (2013–2023). *Computers in Biology and Medicine*, 165, 107441. <https://www.sciencedirect.com/science/article/pii/S001048252300906X>
- [3] Ochoa, J. G. D., Maier, L., & Csiszar, O. (2023). Bayesian logical neural networks for human-centered applications in medicine. *Frontiers in Bioinformatics*, 3, 1082941. <https://pmc.ncbi.nlm.nih.gov/articles/PMC9975151/>