

# How Does AI Handle Conflicting Clinical Information?

Rasit Dinc

*Rasit Dinc Digital Health & AI Research*

Published: December 4, 2017 | AI in Clinical Decision Support

DOI: [10.5281/zenodo.17998953](https://doi.org/10.5281/zenodo.17998953)

---

## Abstract

The integration of Artificial Intelligence (AI) into healthcare has brought about a paradigm shift in clinical decision-making. AI-powered tools are increasi...

# How Does AI Handle Conflicting Clinical Information?

**Author:** Rasit Dinc

## Introduction

The integration of Artificial Intelligence (AI) into healthcare has brought about a paradigm shift in clinical decision-making. AI-powered tools are increasingly used to analyze complex medical data, assist in diagnoses, and personalize treatment plans. However, a significant challenge arises when AI systems encounter conflicting clinical information. This can stem from various sources, including contradictory data from different diagnostic tests, conflicting expert opinions, or inconsistencies within patient records. The ability of AI to navigate these conflicts is crucial for its safe and effective implementation in clinical practice. This article explores the methods AI employs to manage conflicting information, the potential pitfalls, and the future directions for developing more robust and reliable AI systems for healthcare.

## Methods for Handling Conflicting Information

AI systems utilize several advanced techniques to manage and resolve conflicting clinical data. These methods are designed to weigh evidence, quantify uncertainty, and make informed recommendations. Key approaches include:

**Probabilistic Modeling:** *This involves using statistical models, such as Bayesian networks, to represent and reason about uncertainty. By assigning probabilities to different pieces of information, the AI can calculate the most likely true state of the patient, even in the presence of conflicting data. This allows the system to assess the reliability of different sources and make a statistically informed decision [2].*

**Ensemble Methods:** This technique

combines the predictions of multiple AI models to arrive at a more accurate and robust conclusion. By averaging out disagreements among the models, ensemble methods can mitigate the impact of individual model errors and produce a more reliable output. This is particularly useful when dealing with complex and noisy clinical data [2]. **Data Preprocessing and Cleaning:** *Before the data is even fed into the AI model, rigorous preprocessing and cleaning are essential. This involves identifying and removing outliers, reconciling conflicting labels through methods like majority voting, and applying domain-specific rules to ensure data consistency. In natural language processing (NLP) applications, models like BERT can analyze the context of clinical notes to resolve ambiguities [2].* **Uncertainty Quantification:** AI models can be designed to quantify their own uncertainty about a prediction. Techniques like Monte Carlo dropout and Bayesian neural networks provide a measure of confidence in the AI's output. When the uncertainty is high, the system can flag the case for human review, ensuring that a clinician makes the final decision in ambiguous situations [2].

## The Challenge of Human-AI Collaboration

---

While these technical solutions are promising, the interaction between clinicians and AI systems introduces another layer of complexity. A recent study in *Nature Communications* highlighted the different types of errors that can occur in human-AI collaboration [1]. The study identifies three main error types:

**False Confirmation Error:** *Both the clinician and the AI are incorrect, but they agree with each other, reinforcing the wrong decision.* **False Conflict Error:** The clinician is correct, but the AI is incorrect, and the clinician changes their correct diagnosis to align with the AI's error. **True Conflict Error:** *The clinician is incorrect, but the AI is correct, and the clinician overrides the correct AI diagnosis.*

*This research underscores the importance of not just the AI's accuracy, but also how clinicians interact with and interpret the AI's outputs. Over-reliance on AI can lead to false conflict errors, especially for high-performing clinicians, while a lack of trust can result in true conflict errors. Explainable AI (XAI) can help mitigate these issues by providing insights into the AI's reasoning, but it can also introduce new biases if not carefully implemented [1].*

## Future Directions and Conclusion

---

*The ability of AI to handle conflicting clinical information is a rapidly evolving field. Future research is focused on developing more sophisticated methods for uncertainty quantification and creating more transparent and interpretable AI models. Conformal predictions, for example, offer a promising approach by providing a range of possible outcomes rather than a single prediction, allowing clinicians to explore different possibilities [1].*

*In conclusion, while AI holds immense potential to revolutionize healthcare, its ability to manage conflicting clinical information is a critical determinant of its success. By employing advanced techniques like probabilistic modeling,*

*ensemble methods, and uncertainty quantification, AI can navigate these challenges. However, the human-AI interaction remains a crucial factor, and further research is needed to optimize this collaboration and minimize errors. As AI technology continues to advance, a focus on transparency, reliability, and effective human-AI teaming will be paramount to ensuring its safe and beneficial integration into clinical practice.*

## **References**

---

[1] Rosenbacke, R., Melhus, Å. & Stuckler, D. (2024). *False conflict and false confirmation errors are crucial components of AI accuracy in medical decision making.* Nature Communications, 15(1), 6896.   
[<https://www.nature.com/articles/s41467-024-50952-3>] (<https://www.nature.com/articles/s41467-024-50952-3>)

[2] Milvus. (n.d.). *How does AI deal with conflicting information?* Milvus AI Quick Reference\*. Retrieved from [<https://milvus.io/ai-quick-reference/how-does-ai-deal-with-conflicting-information>](<https://milvus.io/ai-quick-reference/how-does-ai-deal-with-conflicting-information>)

---

**Rasit Dinc Digital Health & AI Research**

<https://rasitdinc.com>

© 2017 Rasit Dinc