

How Does AI Enable Personalized Pediatric Medicine?

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: November 30, 2017 | AI in Pediatrics

[DOI: 10.5281/zenodo.1799895](https://doi.org/10.5281/zenodo.1799895)

Abstract

Pediatric medicine's inherent complexity, stemming from the dynamic nature of childhood development, demands a personalized approach that traditional models ...

How Does AI Enable Personalized Pediatric Medicine?

By Rasit Dinc

Introduction

Pediatric medicine's inherent complexity, stemming from the dynamic nature of childhood development, demands a personalized approach that traditional models often fail to provide. Artificial Intelligence (AI) is emerging as a transformative force, leveraging big data and machine learning to usher in an era of precision pediatrics. This article explores AI's role in personalizing pediatric care, from enhancing diagnostics to tailoring treatments, while also examining the challenges and charting a course for its responsible integration into clinical practice.

The Landscape of AI in Pediatric Medicine

While AI's integration into healthcare has been rapid, its application in pediatrics has trailed behind adult medicine, creating a significant research and development gap [1]. This disparity is particularly evident in the limited number of AI-powered tools approved for pediatric use beyond radiology. The primary hurdles include the scarcity of large-scale, high-quality pediatric data and the intricate ethical and regulatory landscape of pediatric research. Recognizing this imbalance, the medical community is now intensifying efforts to foster pediatric AI research, aiming to ensure that children also benefit from these technological advancements [1].

AI-Powered Personalized Decision-Making

Personalized medicine hinges on tailoring decisions to individual patient characteristics, a task for which AI is exceptionally well-suited. By analyzing

complex datasets from sources like electronic health records (EHRs) and genomic profiles, AI algorithms can identify subtle patterns and predict clinical outcomes. A compelling application of this is in the pediatric emergency department (PED), where AI-driven models can help differentiate between benign fevers and serious bacterial infections (SBIs) in young children. These models provide a more accurate risk assessment, enabling clinicians to make timely interventions for high-risk patients while avoiding unnecessary treatments for those at low risk, thereby enhancing patient safety and optimizing resource allocation [2].

Challenges and the Path Forward

Despite its promise, integrating AI into pediatric medicine presents unique challenges that demand a tailored approach to its development and implementation. Key challenges include:

Data Scarcity: *The relative rarity of many pediatric diseases and the smaller patient population make it difficult to gather the large datasets required to train robust AI models.* **Ethical Considerations:** Obtaining informed consent for research and data sharing in pediatrics is complex, involving parents, guardians, and the assent of the child when appropriate. Data privacy and security are also of paramount concern. **Algorithmic Transparency and Bias:** *The "black box" nature of some AI models can be a barrier to clinical adoption. It is crucial to ensure that algorithms are transparent, explainable, and free from biases that could exacerbate health disparities.* **The High Stakes of Errors:** The potential for harm from an AI-related error is significantly greater in children, with the potential for long-term consequences. This underscores the need for rigorous validation and post-deployment monitoring of AI tools.

Addressing these challenges requires a collaborative, pediatric-centric approach to AI governance. This includes fostering data-sharing initiatives to create larger and more diverse datasets, developing clear ethical guidelines for AI research in children, and promoting the development of transparent and fair AI models. By prioritizing safety, equity, and a patient-centered approach, we can navigate these challenges and unlock the full potential of AI in pediatric medicine.

Conclusion

AI is set to revolutionize pediatric medicine by enabling a more personalized and precise standard of care. By enhancing diagnostic accuracy, tailoring treatments, and optimizing resource allocation, AI can significantly improve children's health outcomes. Although challenges remain, a collaborative effort among researchers, clinicians, policymakers, and families will ensure the responsible development and deployment of these technologies. The future of pediatrics lies in the synergy of human expertise and AI, creating a healthcare landscape where every child receives the individualized care they need to flourish.

References

[1] Richter, F., Holmes, E., Richter, F., Guttmann, K., Duong, S. Q., Gangadharan, S., ... & Glicksberg, B. S. (2025). Toward governance of artificial intelligence in pediatric healthcare. *npj Digital Medicine*, 8(1), 636. [https://www.nature.com/articles/s41746-025-02000-7]
(https://www.nature.com/articles/s41746-025-02000-7)

[2] Jankauskaite, L., Oniunaite, U., & Kevalas, R. (2025). Personalized decision-making through AI solutions in pediatric emergency medicine: Focusing on febrile children. *PLOS Digital Health*, 4(11), e0001080. [https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0001080]
(https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0001080)

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2017 Rasit Dinc