

How Does AI Enable Personalized Drug Dosing?

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: December 7, 2017 | Drug Discovery and Pharmaceutical AI

[DOI: 10.5281/zenodo.1799895](https://doi.org/10.5281/zenodo.1799895)

Abstract

The era of one-size-fits-all medicine is gradually giving way to a more precise and individualized approach to healthcare. Personalized medicine, which tailo...

How Does AI Enable Personalized Drug Dosing?

By Rasit Dinc

The era of one-size-fits-all medicine is gradually giving way to a more precise and individualized approach to healthcare. Personalized medicine, which tailors medical treatment to the individual characteristics of each patient, holds the promise of delivering safer and more effective therapies. A critical aspect of this is personalized drug dosing, which aims to optimize the amount of medication a patient receives based on their unique genetic makeup, physiology, and lifestyle. The complexity of this task, however, presents significant challenges. Enter Artificial Intelligence (AI), a transformative technology that is revolutionizing how we approach drug dosage, making it more precise and personalized than ever before.

Traditionally, drug dosages have been determined based on factors like age and weight, which often fails to account for the vast inter-individual variability in drug response. This can lead to suboptimal treatment outcomes, including adverse drug reactions, which are a major cause of morbidity and mortality. AI, particularly machine learning (ML) and deep learning algorithms, offers a powerful solution to this problem by enabling the analysis of vast and complex datasets to identify the subtle patterns that govern how an individual will respond to a particular drug [1].

One of the key ways AI is enabling personalized drug dosing is through its application in pharmacogenomics, the study of how genes affect a person's response to drugs. AI algorithms can analyze a patient's genomic data to identify specific genetic markers that are associated with drug metabolism and efficacy. By understanding how a patient's genetic makeup influences their ability to process a drug, clinicians can make more informed decisions about the optimal dosage. This can help to minimize the risk of adverse

reactions and maximize the therapeutic benefit of the medication [2].

Machine learning models are also being developed to create individualized dosing recommendations. These models can be trained on large datasets that include patient information such as age, weight, medical history, and even data from wearable devices. By learning from this data, the models can predict how a patient will respond to a particular drug and recommend a personalized dose. For example, AI-powered platforms can use a patient's own data to dynamically personalize their own dose recommendations, leading to more effective and safer treatment [1].

Furthermore, AI-driven predictive analytics can monitor a patient's response to treatment in real-time. By continuously analyzing data from various sources, such as electronic health records and wearable sensors, AI systems can detect subtle changes in a patient's condition and alert clinicians to the need for a dose adjustment. This allows for a more dynamic and adaptive approach to drug dosing, ensuring that the patient is always receiving the optimal amount of medication.

Beyond just dosage, AI is also transforming the entire drug discovery and development process. AI algorithms can accelerate the identification of new drug targets and the design of novel drug molecules. For instance, DeepMind's AlphaFold algorithm has made a significant breakthrough in predicting protein structures, which is crucial for understanding drug-protein interactions [1]. This not only speeds up the development of new drugs but also provides valuable insights that can be used to personalize their use.

In conclusion, AI is playing a pivotal role in the shift towards personalized drug dosing. By leveraging the power of machine learning and deep learning, AI is enabling a more precise and individualized approach to medicine. From analyzing a patient's genetic data to creating personalized dosing models and monitoring treatment response in real-time, AI is helping to ensure that patients receive the right dose of the right drug at the right time. While there are still challenges to overcome, such as data privacy and the need for robust regulatory frameworks, the future of personalized drug dosing is undoubtedly intertwined with the continued advancement of AI.

References

[1] Serrano, D. R., Luciano, F. C., Anaya, B. J., Ongoren, B., Kara, A., Molina, G., ... & Lalatsa, A. (2024). Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. *Pharmaceutics*, 16(10), 1328. [\[https://pmc.ncbi.nlm.nih.gov/articles/PMC11510778/\]](https://pmc.ncbi.nlm.nih.gov/articles/PMC11510778/) [\(https://pmc.ncbi.nlm.nih.gov/articles/PMC11510778/\)](https://pmc.ncbi.nlm.nih.gov/articles/PMC11510778/)

[2] Taherdoost, H., & Ghofrani, A. (2024). AI's role in revolutionizing personalized medicine by reshaping pharmacogenomics and drug therapy. *Intelligent Pharmacy*, 2(5), 643-650. [\[https://www.sciencedirect.com/science/article/pii/S2949866X2400087X\]](https://www.sciencedirect.com/science/article/pii/S2949866X2400087X) [\(https://www.sciencedirect.com/science/article/pii/S2949866X2400087X\)](https://www.sciencedirect.com/science/article/pii/S2949866X2400087X)

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2017 Rasit Dinc