

From Manual Tracing to Machine Learning: The Definitive Comparison of AI and Traditional Public Health Surveillance

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: June 2, 2023 | AI Diagnostics

DOI: [10.5281/zenodo.17997491](https://doi.org/10.5281/zenodo.17997491)

Abstract

Effective public health relies on surveillance—the continuous, systematic collection, analysis, and interpretation of health-related data [1]. For decades, thi...

Effective public health relies on surveillance—the continuous, systematic collection, analysis, and interpretation of health-related data [1]. For decades, this function relied on **traditional (manual) tracking**, a labor-intensive process involving human-driven data aggregation, laboratory reporting, and meticulous contact tracing. This foundational system is now being challenged and augmented by the rapid emergence of **Artificial Intelligence (AI) public health surveillance**. The key question is how to strategically integrate these two systems to build a more resilient global health framework.

The Case for Traditional Tracking: Human Context and Trust

Traditional surveillance methods, often characterized by human-to-human interaction, offer distinct and irreplaceable advantages. At its core, manual tracking provides **human judgment and context**, allowing officials to understand local cultural nuances, verify data quality at the source, and build community trust [2]. A human contact tracer can interpret subtle social cues or contextualize a reported symptom in a way an algorithm cannot, making this personal engagement vital for ethical data collection and compliance.

However, the limitations of this manual approach are stark. It is inherently **slow, labor-intensive, and resource-heavy**, leading to significant reporting delays that can cost lives during a rapidly spreading outbreak. Furthermore, the reliance on human reporting makes the system prone to error, inconsistency, and bottlenecks in data aggregation.

The Power of AI Public Health Surveillance

AI and machine learning are fundamentally transforming the speed and scale of public health response. The primary advantage of AI surveillance is its

speed and timeliness. Unlike manual review, which can take days or weeks, AI algorithms can process vast amounts of data in real-time, significantly improving the timeliness of outbreak detection and response [3].

Beyond speed, AI excels in **scale and scope**. It can analyze massive, diverse datasets that are simply unmanageable for human teams, including social media trends, search query data, electronic health records, and even environmental sensor data [4]. This capability allows for the identification of subtle patterns and anomalies that precede traditional clinical reporting, enabling sophisticated **predictive modeling** to forecast future disease trends and allocate resources proactively [5]. For example, AI can analyze reports alongside local weather and social data to predict a regional surge before it overwhelms hospitals.

Ethical and Implementation Challenges

Despite its transformative potential, the deployment of AI in public health is fraught with challenges. A major concern is **data quality and bias**. AI systems are only as good as the data they are trained on; if the input data is biased, incomplete, or inaccurate—the classic "garbage in, garbage out" problem—the resulting surveillance models will perpetuate health inequities [6].

Furthermore, the **algorithmic opacity**, or "black box" problem, can make it difficult for public health officials to understand why an AI model made a specific prediction, hindering accountability and trust. There are also significant **privacy concerns** related to the collection and use of vast amounts of personal data, requiring robust data governance. Successful implementation also demands substantial investment in digital infrastructure and workforce training.

For more in-depth analysis on the ethical and strategic deployment of these technologies, the resources at [www.rasitdinc.com] (<https://www.rasitdinc.com>) provide expert commentary.

Conclusion: The Imperative of a Hybrid Future

The comparison between AI and manual public health surveillance is not a zero-sum game. The optimal solution for the future is a **hybrid model** that leverages the strengths of both approaches. AI provides the necessary speed, scale, and predictive power to handle modern global health threats, acting as an early warning system. Manual tracking provides the essential context, ethical oversight, and community trust necessary for effective intervention and policy implementation.

By integrating AI tools into existing public health frameworks, we can create a system that is both technologically advanced and deeply human-centered, ensuring that the future of disease tracking is not just digital, but also more equitable and effective.

**

References

[1] *Centers for Disease Control and Prevention*. Principles of Epidemiology in Public Health Practice, Third Edition: An Introduction to Applied Epidemiology and Biostatistics. *CDC*, 2012. [2] Olawade, D. B. (2023). *Using artificial intelligence to improve public health*. *BMC Public Health*, 23(1), 2197. [<https://pmc.ncbi.nlm.nih.gov/articles/PMC10637620/>] (<https://pmc.ncbi.nlm.nih.gov/articles/PMC10637620/>) [3] Rilkoff, H. (2024). *Innovations in public health surveillance: An overview of artificial intelligence methods*. *BMC Public Health*, 24(1), 1089. [<https://pmc.ncbi.nlm.nih.gov/articles/PMC11075801/>] (<https://pmc.ncbi.nlm.nih.gov/articles/PMC11075801/>) [4] Idahor, C. O. (2025). *Infectious Disease Surveillance in the Era of Big Data and AI: Opportunities and Pitfalls*. *Cureus*, 17(1). [<https://www.cureus.com/articles/378889-infectious-disease-surveillance-in-the-era-of-big-data-and-ai-opportunities-and-pitfalls>] (<https://www.cureus.com/articles/378889-infectious-disease-surveillance-in-the-era-of-big-data-and-ai-opportunities-and-pitfalls>) [5] Panteli, D. (2025). *Artificial intelligence in public health: promises, challenges and governance*. *The Lancet Regional Health - Europe*, 48. [<https://www.sciencedirect.com/science/article/pii/S2468266725000362>] (<https://www.sciencedirect.com/science/article/pii/S2468266725000362>) [6] Tsirintani, M. (2025). *Pros, Cons and Limits of AI in Public Health*. *Journal of Personalized Medicine**, 15(5), 509. [<https://pubmed.ncbi.nlm.nih.gov/40380415/>] (<https://pubmed.ncbi.nlm.nih.gov/40380415/>)
