

# Does AI Make Healthcare More Personalized? An Academic Review of Precision Medicine

Rasit Dinc

*Rasit Dinc Digital Health & AI Research*

Published: June 4, 2022 | Medical Imaging AI

DOI: [10.5281/zenodo.17997905](https://doi.org/10.5281/zenodo.17997905)

---

## Abstract

Does AI Make Healthcare More Personalized? An Academic Review of Precision Medicine  
The concept of personalized medicine—tailoring medical treatment to ...

# Does AI Make Healthcare More Personalized? An Academic Review of Precision Medicine

The concept of **personalized medicine**—tailoring medical treatment to the individual characteristics of each patient—has long been the aspirational goal of healthcare. In the 21st century, the advent of Artificial Intelligence (AI) has moved this aspiration closer to reality. AI's capacity to process vast, complex datasets, including genomic, clinical, and lifestyle information, is fundamentally transforming how diseases are diagnosed, treated, and prevented. The central question remains: Does AI truly make healthcare more personalized, and what are the implications for patients and practitioners?

## The AI Engine of Precision Medicine

Personalized medicine, often used interchangeably with **precision medicine**, relies on identifying which approaches will be effective for which patients based on their unique biological and environmental profiles [1]. AI, particularly machine learning and deep learning, acts as the engine that drives this level of precision.

### ***Key Applications of AI in Personalization:***

- 1. Genomic Analysis and Risk Prediction:** AI algorithms can analyze whole-genome sequencing data to identify subtle genetic markers associated with disease risk or drug response. This allows for proactive screening and personalized risk management plans [2].
- 2. Individualized Treatment Planning:** For complex diseases like cancer, AI can analyze a patient's tumor characteristics, historical treatment data, and outcomes from millions of other patients to recommend the most effective chemotherapy, radiation, or immunotherapy regimen [3]. This moves beyond one-size-fits-all protocols.
- 3. Optimized Drug Dosing:** AI models can predict how an individual patient

will metabolize a specific drug based on their genetics, age, weight, and concurrent medications. This capability is crucial for determining the optimal, personalized dosage, minimizing side effects, and maximizing therapeutic effect [4]. **4. Real-Time Monitoring and Intervention:** Wearable devices and remote patient monitoring systems generate continuous streams of data. AI analyzes this data in real-time to detect subtle changes in a patient's condition, allowing for timely, personalized interventions before a health crisis occurs [5].

## Benefits and Challenges: A Balanced View

---

The benefits of AI-driven personalization are profound, promising improved patient outcomes, reduced healthcare costs, and a shift from reactive to proactive care. However, the integration of AI into clinical practice is not without significant challenges.

|                 |                                                                                        |                                                                                                                         |                                                                                                             |                                                                                            |
|-----------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Aspect          | Benefit of AI in Personalized Healthcare                                               | Challenge of AI in Personalized Healthcare     :---   :---   :---                                                       | <b>Data</b>   Integration of diverse data types (genomic, clinical, imaging) for holistic patient profiles. | Data privacy, security, and the need for massive, high-quality, and standardized datasets. |
| <b>Equity</b>   | Potential to democratize access to expert-level diagnostics in resource-poor settings. | Risk of algorithmic bias, perpetuating or exacerbating existing health disparities if training data is not diverse [6]. |                                                                                                             |                                                                                            |
| <b>Clinical</b> | Enhanced diagnostic accuracy and faster identification of rare diseases.               | Lack of transparency (the "black box" problem) and the need for Explainable AI (XAI) to build clinical trust [7].       | <b>Regulatory</b>                                                                                           | Faster identification of new drug targets and personalized clinical trial design.          |
|                 |                                                                                        | Slow regulatory frameworks struggling to keep pace with rapidly evolving AI technologies.                               |                                                                                                             |                                                                                            |

For more in-depth analysis on the ethical, technical, and clinical implications of this digital transformation in medicine, the resources at [www.rasitdinc.com](http://www.rasitdinc.com) provide expert commentary and professional insight.

## The Future of Hyper-Personalization

---

The trajectory of AI in healthcare points toward **hyper-personalization**, where every aspect of a patient's health journey is continuously optimized. This future involves not just treating disease, but predicting individual susceptibility to illness years in advance and designing lifestyle and environmental modifications tailored to their unique biology.

This shift requires robust collaboration between clinicians, data scientists, and policymakers to ensure that AI systems are not only effective but also ethical, equitable, and integrated seamlessly into the existing healthcare infrastructure. The promise of AI is not to replace the human element of care, but to empower it with unprecedented levels of insight, making truly personalized medicine the standard, not the exception.

\*\*

## References

[1] Johnson, K. B., Wei, W. Q., & Weeraratne, D. (2021). *Precision medicine, AI, and the future of personalized health care*. Clinical and Translational Science, 14(1), 19-27. [\[https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1111/cts.12884\]](https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1111/cts.12884)

[2] Li, Y. H., Li, Y. L., Wei, M. Y., & Li, G. Y. (2024). *Innovation and challenges of artificial intelligence technology in personalized healthcare*. Scientific Reports, 14(1), 1-13. [\[https://www.nature.com/articles/s41598-024-70073-7\]](https://www.nature.com/articles/s41598-024-70073-7)

[3] Chustek, M. (2024). *Benefits and Risks of AI in Health Care: Narrative Review*. International Journal of Medical Reviews, 1(1), e53616. [\[https://www.ijmr.org/2024/1/e53616\]](https://www.ijmr.org/2024/1/e53616)

[4] Perlekar, P., & Desai, A. (2025). *The Role of Artificial Intelligence in Personalized Medicine: Challenges and Opportunities*. Metallurgical and Materials Engineering, 1(1), 1-10. [\[https://www.metall-mater-eng.com/index.php/home/article/view/1322\]](https://www.metall-mater-eng.com/index.php/home/article/view/1322)

[5] Alowais, S. A. (2023). *Revolutionizing healthcare: the role of artificial intelligence in clinical practice*. BMC Medical Education, 23(1), 1-10. [\[https://bmcmededuc.biomedcentral.com/articles/10.1186/s12909-023-04698-z\]](https://bmcmededuc.biomedcentral.com/articles/10.1186/s12909-023-04698-z)

[6] Rawat, B., Joshi, Y., & Kumar, A. (2023). *AI in healthcare: opportunities and challenges for personalized medicine and disease diagnosis*. 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT), 1158-1163. [\[https://ieeexplore.ieee.org/abstract/document/10220746/\]](https://ieeexplore.ieee.org/abstract/document/10220746/)

[7] Vani, M. S. (2025). *Personalized health monitoring using explainable AI*. Scientific Reports\*, 15(1), 1-10. [\[https://www.nature.com/articles/s41598-025-15867-z\]](https://www.nature.com/articles/s41598-025-15867-z)