

Decoding the Digital Doctor: How the FDA Classifies AI Software as a Medical Device

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: January 1, 2023 | Medical Imaging AI

DOI: [10.5281/zenodo.17997660](https://doi.org/10.5281/zenodo.17997660)

Abstract

The integration of Artificial Intelligence AI and Machine Learning ML into healthcare is rapidly transforming diagnostics, treatment planning, and patient mo...

The integration of Artificial Intelligence (AI) and Machine Learning (ML) into healthcare is rapidly transforming diagnostics, treatment planning, and patient monitoring. As these sophisticated algorithms move from research labs to clinical practice, a critical question arises for innovators and healthcare professionals alike: **How does the U.S. Food and Drug Administration (FDA) classify AI software as a medical device?** The answer lies in a nuanced, risk-based framework centered on the concept of Software as a Medical Device (SaMD).

The Foundation: Software as a Medical Device (SaMD)

The FDA's regulatory approach for AI software is rooted in the international definition of SaMD, established by the International Medical Device Regulators Forum (IMDRF) [1]. SaMD is defined as:

> "Software intended to be used for one or more medical purposes that perform these purposes without being part of a hardware medical device."

This definition is the crucial first filter. If an AI application's **intended use** is for a medical purpose—such as diagnosing a disease, monitoring a patient's condition, or driving a treatment decision—it is classified as a medical device, regardless of whether it runs on a hospital server, a personal smartphone, or a cloud platform.

Conversely, software that merely manages hospital administration, automates billing, or provides general health and wellness information (e.g., a simple calorie counter) is typically not considered a medical device and falls outside the FDA's regulatory purview.

The Classification Matrix: Intended Use and Risk

Once an AI software is determined to be SaMD, the FDA assigns a regulatory class (Class I, II, or III) based on the risk it poses to the patient. This risk is

primarily determined by two factors: the **significance of the information** provided by the software and the **state of the healthcare situation or condition** the software addresses [3].

The IMDRF framework, which the FDA utilizes, categorizes SaMD into four groups based on the potential impact of an inaccurate result:

Category Healthcare Situation/Condition Significance of Information Provided Examples (AI/ML) --- --- --- ---	Category I (Low Risk) Non-serious Inform/Drive Clinical Management AI for viewing medical images without processing.	Category II (Medium Risk) Non-serious or Serious Treat/Diagnose or Monitor/Alert AI for early detection of diabetic retinopathy (Serious condition, Inform/Drive).	Category III (High Risk) Critical Inform/Drive Clinical Management AI for diagnosing acute stroke from CT scans (Critical condition, Inform/Drive).	Category IV (Highest Risk) Critical Treat/Diagnose or Monitor/Alert AI for real-time monitoring of vital signs in an ICU to trigger life-saving intervention (Critical condition, Treat/Diagnose).
---	---	---	--	---

Most AI/ML-based SaMD currently marketed in the U.S. fall into **Class II**, requiring a Premarket Notification (510(k)) clearance, which demonstrates that the device is substantially equivalent to a legally marketed predicate device [4].

The Challenge of Adaptive AI: A New Regulatory Paradigm

The traditional medical device regulatory model was designed for static devices, where a change to the product required a new premarket review. However, AI/ML algorithms are often **adaptive**; they are designed to learn and change their performance over time as they encounter new data. This dynamic nature presents a unique regulatory challenge.

To address this, the FDA has introduced a new, more flexible regulatory framework outlined in its **Artificial Intelligence and Machine Learning Software as a Medical Device Action Plan** [2]. This plan focuses on a "Total Product Lifecycle" approach, which includes:

- 1. Good Machine Learning Practice (GMLP):** Guiding principles for the development, testing, and evaluation of AI/ML SaMD [5].
- 2. Predetermined Change Control Plan (PCCP):** A novel concept where manufacturers can pre-specify the types of modifications (the "pre-spec") they intend to make to their AI algorithm and the methods (the "Algorithm Change Protocol") they will use to validate those changes. If the changes fall within the PCCP, they may not require a new premarket submission, allowing for faster, safer iteration [6].

This forward-thinking approach allows the FDA to ensure the safety and effectiveness of the initial product while also enabling the continuous improvement that is the hallmark of AI technology.

Conclusion

The FDA classifies AI software as a medical device if its **intended use** is for a

medical purpose, falling under the SaMD definition. The specific regulatory pathway—and the rigor of the review—is then determined by a **risk-based classification** that considers the severity of the health condition and the significance of the information the AI provides. By embracing a Total Product Lifecycle approach with tools like the Predetermined Change Control Plan, the FDA is striving to balance the need for patient safety with the imperative for innovation in digital health.

For more in-depth analysis on the regulatory landscape of digital health and the future of AI in medicine, the resources at www.rasitdinc.com provide expert commentary.

References

- [1] International Medical Device Regulators Forum (IMDRF). *Software as a Medical Device (SaMD): Key Definitions.* (2013).
- [2] U.S. Food and Drug Administration (FDA). *Artificial Intelligence and Machine Learning Software as a Medical Device Action Plan.* (2021).
- [3] U.S. Food and Drug Administration (FDA). *Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD).* (2019).
- [4] U.S. Food and Drug Administration (FDA). *Premarket Notification 510(k).*
- [5] U.S. Food and Drug Administration (FDA). *Good Machine Learning Practice for Medical Device Development: Guiding Principles.* (2021).
- [6] U.S. Food and Drug Administration (FDA). *Marketing Submission Recommendations for a Predetermined Change Control Plan for Artificial Intelligence/Machine Learning (AI/ML)-Enabled Device Software Functions.* (Draft Guidance, 2023).