

# Can Artificial Intelligence Detect Diabetic Retinopathy? A Deep Dive into Autonomous Screening

Rasit Dinc

*Rasit Dinc Digital Health & AI Research*

Published: July 4, 2024 | AI Diagnostics

DOI: [10.5281/zenodo.17997056](https://doi.org/10.5281/zenodo.17997056)

## Abstract

Introduction: The Growing Challenge of Diabetic Retinopathy Diabetic Retinopathy (DR) is a leading cause of preventable blindness worldwide, affecting a...

## Introduction: The Growing Challenge of Diabetic Retinopathy

Diabetic Retinopathy (DR) is a leading cause of preventable blindness worldwide, affecting a significant portion of the over 537 million adults living with diabetes [1]. Early detection and timely treatment are crucial for preventing vision loss. However, the sheer volume of patients requiring regular screening, coupled with a shortage of eye care specialists, particularly in underserved areas, creates a significant public health challenge. This critical gap has positioned **Artificial Intelligence (AI)** as a transformative solution. The question is no longer *if* AI can detect DR, but *how effectively* and *under what clinical conditions* it is being deployed.

## The Mechanism: How AI Screens for DR

AI systems designed for DR detection primarily utilize **Deep Learning (DL)**, a subset of machine learning. These algorithms are trained on vast datasets of retinal images, learning to identify subtle patterns and lesions characteristic of DR, such as microaneurysms, hemorrhages, and exudates.

The process typically involves: 1. **Image Acquisition:** A non-mydriatic (non-dilated) fundus camera captures an image of the patient's retina. 2. **AI Analysis:** The DL algorithm processes the image, analyzing it for signs of DR and classifying the severity. 3. **Output:** The system provides an immediate result, often classifying the patient as having "referable DR" (requiring specialist follow-up) or "non-referable DR."

This autonomous approach allows for screening to be conducted in primary care settings, pharmacies, or mobile clinics, dramatically increasing accessibility.

## Clinical Efficacy: AI vs. Human Experts

The performance of AI systems is not merely theoretical; it has been

rigorously tested in clinical trials and has achieved regulatory clearance. Several studies have demonstrated that AI systems can perform with high accuracy, often surpassing the sensitivity of general practitioners and even matching that of retina specialists in certain contexts.

A pivotal study comparing the **EyeArt AI system** with dilated ophthalmoscopy performed by ophthalmologists highlighted the AI's strength in identifying disease [2]. The study found that for detecting more than mild DR (mtmDR), the EyeArt system achieved a **sensitivity of 96.4%** (95% CI, 93.1%–99.8%). In contrast, dilated ophthalmoscopy performed by general ophthalmologists showed a sensitivity of only 27.7% (95% CI, 20.1%–35.2%) [2].

|        |                    |                                                   |     |     |     |                         |       |       |                         |       |       |
|--------|--------------------|---------------------------------------------------|-----|-----|-----|-------------------------|-------|-------|-------------------------|-------|-------|
| Metric | AI System (EyeArt) | Dilated Ophthalmoscopy (General Ophthalmologists) | --- | --- | --- | Sensitivity (for mtmDR) | 96.4% | 27.7% | Specificity (for mtmDR) | 88.4% | 99.6% |
|--------|--------------------|---------------------------------------------------|-----|-----|-----|-------------------------|-------|-------|-------------------------|-------|-------|

*Note: Sensitivity refers to the ability to correctly identify those with the disease (true positive rate), while specificity refers to the ability to correctly identify those without the disease (true negative rate).*

While the AI system showed a slightly lower specificity (88.4%) compared to the human examiners (99.6%), its exceptionally high sensitivity is a critical advantage in a screening context. A high sensitivity ensures that very few cases of vision-threatening DR are missed, which is the primary goal of any public health screening program.

### **Regulatory Landscape and Real-World Adoption**

The clinical utility of AI in DR detection has been validated by regulatory bodies. The U.S. Food and Drug Administration (FDA) has granted clearance to several autonomous AI devices, including:

#### ***LumineticsCore (formerly IDx-DR) EyeArt (Eyenuk) AEYE Health***

*These clearances mark a significant milestone, allowing these systems to provide a diagnostic output without the need for immediate human interpretation. This is a crucial distinction, enabling true autonomous screening.*

### **Challenges and the Future of AI in Eye Care**

*Despite the remarkable progress, challenges remain. These include the need for robust integration into existing healthcare workflows, addressing ethical concerns around autonomous decision-making, and ensuring equitable access to the technology. Furthermore, the performance of AI can be affected by poor image quality, which is a common issue in real-world screening environments.*

*The future of AI in eye care is moving beyond simple detection to include prediction of disease progression, personalized treatment recommendations, and the analysis of other ocular diseases like Age-related Macular Degeneration (AMD) and glaucoma. The integration of these tools promises a future where preventable blindness from DR is significantly reduced.*

*For more in-depth analysis on the regulatory pathways and the economic impact of autonomous AI in healthcare, the resources at [www.rasitdinc.com]*

(<https://www.rasitdinc.com>) provide expert commentary and professional insight.

### **Conclusion**

The answer to "Can AI detect diabetic retinopathy?" is a resounding **yes**. Autonomous AI systems are not just a promising technology; they are a clinically validated, FDA-cleared reality that is already transforming the landscape of DR screening. By offering high sensitivity and the ability to operate outside of traditional ophthalmology clinics, AI is poised to close the screening gap, save sight, and redefine the standard of care for millions of people living with diabetes.

### References\*

[1] International Diabetes Federation. IDF Diabetes Atlas, 10th Edition. 2021. Available at: [<https://diabetesatlas.org/>] (<https://diabetesatlas.org/>) [2] Lim, J. I., et al. (2022). Artificial Intelligence Detection of Diabetic Retinopathy: Subgroup Comparison of the EyeArt System with Ophthalmologists' Dilated Examinations. *Ophthalmology Science*, 3(1), 100228. Available at: [<https://pmc.ncbi.nlm.nih.gov/articles/PMC9636573/>] (<https://pmc.ncbi.nlm.nih.gov/articles/PMC9636573/>) [3] Teng, C. W., et al. (2026). Autonomous Artificial Intelligence in Diabetic Retinopathy Screening: A Review of Clinical Trials and Regulatory Approvals. *Ophthalmology Science*. Available at: [<https://www.sciencedirect.com/science/article/pii/S2666914525002337>] (<https://www.sciencedirect.com/science/article/pii/S2666914525002337>) [4] Eyenuk, Inc. EyeArt - Artificial Intelligence Eye Screening\*. Available at: [<https://www.eyenuk.com/us-en/products/eyeart/>] (<https://www.eyenuk.com/us-en/products/eyeart/>)