

Can AI Reduce Diagnostic Errors in Healthcare?

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: February 16, 2018 | AI in Clinical Decision Support

[DOI: 10.5281/zenodo.1799892](https://doi.org/10.5281/zenodo.1799892)

Abstract

Diagnostic errors are a significant concern in the healthcare industry, posing substantial risks to patient safety and leading to suboptimal health outcomes....

Can AI Reduce Diagnostic Errors in Healthcare?

Author: Rasit Dinc

Diagnostic errors are a significant concern in the healthcare industry, posing substantial risks to patient safety and leading to suboptimal health outcomes. In high-pressure environments such as emergency departments, the probability of such errors escalates as clinicians are compelled to make swift decisions with limited information, often while experiencing cognitive overload [1]. The emergence of artificial intelligence (AI) has presented a promising frontier for mitigating these challenges, offering a range of tools and techniques to enhance diagnostic accuracy and efficiency.

The Persistent Challenge of Diagnostic Errors

The complexity of human biology, coupled with the inherent pressures of clinical practice, creates a fertile ground for diagnostic errors. Factors contributing to these errors are multifaceted, including but not limited to, incomplete patient information, communication breakdowns, and cognitive biases. The sheer volume of medical literature and patient data available today can be overwhelming for any single practitioner to process, making it difficult to connect disparate pieces of information that might be crucial for an accurate diagnosis. This is particularly true in fast-paced settings where time is of the essence and the margin for error is slim.

How Artificial Intelligence Can Augment Diagnostic Processes

Artificial intelligence is not a panacea, but it offers powerful capabilities to augment the diagnostic process in several key areas. By leveraging AI, healthcare systems can create a more robust and reliable diagnostic workflow.

Streamlining Information Gathering

One of the most immediate applications of AI is in the automation of data retrieval and synthesis. AI algorithms can rapidly sift through extensive electronic health records (EHRs), lab results, and medical imaging data to present a concise and relevant summary to the clinician. This reduces the cognitive burden on healthcare professionals, allowing them to focus on critical thinking and decision-making rather than on administrative tasks [1].

Enhancing Clinical Decision Support

AI-powered clinical decision support (CDS) systems can provide real-time insights and recommendations to clinicians at the point of care. These systems can analyze a patient's symptoms and medical history against a vast database of medical knowledge to suggest potential diagnoses, flag inconsistencies, and highlight potential risks. By offering a ranked list of differential diagnoses, AI can help to counteract cognitive biases and ensure that less common but critical conditions are not overlooked [1].

Facilitating Feedback and Continuous Improvement

AI also has a significant role to play in quality improvement and professional development. AI-powered systems can analyze diagnostic outcomes and provide targeted feedback to clinicians, identifying areas for improvement and offering educational resources. This creates a continuous learning loop that can help to refine diagnostic skills and processes over time, leading to a system-wide reduction in errors [1].

The Role of Machine Learning and Electronic Triggers

A specific application of AI that has shown considerable promise is the use of machine learning to enhance the performance of electronic triggers (e-triggers). E-triggers are automated systems that flag potential diagnostic errors based on predefined rules. For instance, a study published in *JAMA Network Open* demonstrated that machine learning algorithms could significantly improve the positive predictive value of e-triggers for identifying missed opportunities for diagnosis in cases of stroke and abdominal pain [2]. This high predictive value allows health systems to focus their quality improvement efforts on cases where a diagnostic error is most likely to have occurred.

Challenges and Ethical Considerations

Despite the immense potential of AI, its implementation in healthcare is not without challenges. The data used to train AI models may not be generalizable across different health systems or patient populations, which could lead to biased or inaccurate recommendations. There are also important questions regarding health equity, as biases in the data could exacerbate existing disparities in care. Furthermore, the performance of AI models can decay over time, necessitating ongoing monitoring and maintenance to ensure their accuracy and reliability [2]. It is also crucial to distinguish between different types of AI, such as machine learning models and large language models (LLMs), as they have different strengths and weaknesses.

The Future of AI in Diagnostics

Artificial intelligence is poised to become an indispensable tool in the medical field, but it is essential to view it as a supportive technology rather than a replacement for human expertise. The most effective use of AI will be in augmenting the capabilities of clinicians, empowering them to make better, faster, and more accurate decisions. By thoughtfully integrating AI into clinical workflows and addressing the associated challenges, we can harness its power to significantly reduce diagnostic errors and improve patient outcomes.

References

[1] Taylor, R. A., Sangal, R. B., Smith, M. E., Haimovich, A. D., Rodman, A., Iscoe, M. S., ... & Declan, A. (2025). Leveraging artificial intelligence to reduce diagnostic errors in emergency medicine: Challenges, opportunities, and future directions. *Academic Emergency Medicine*, 32(3), 327-339. [\[https://pmc.ncbi.nlm.nih.gov/articles/PMC11921089/\]](https://pmc.ncbi.nlm.nih.gov/articles/PMC11921089/) [\(https://pmc.ncbi.nlm.nih.gov/articles/PMC11921089/\)](https://pmc.ncbi.nlm.nih.gov/articles/PMC11921089/)

[2] Auerbach, A. D. (2024). Laying a Foundation for the Use of Artificial Intelligence in Diagnosis. *JAMA Network Open*, 7(9), e2431907-e2431907. [\[https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2823188\]](https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2823188) [\(https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2823188\)](https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2823188)

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2018 Rasit Dinc