

Can AI Predict Sudden Cardiac Death Risk?

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: June 19, 2020 | AI in Cardiology

DOI: [10.5281/zenodo.17998737](https://doi.org/10.5281/zenodo.17998737)

Abstract

Sudden cardiac death (SCD) is a devastating and often unforeseen event, accounting for a significant portion of cardiovascular mortality worldwide. For decad...

Can AI Predict Sudden Cardiac Death Risk?

Author: Rasit Dinc

Sudden cardiac death (SCD) is a devastating and often unforeseen event, accounting for a significant portion of cardiovascular mortality worldwide. For decades, healthcare professionals have relied on relatively blunt instruments for risk stratification, primarily the left ventricular ejection fraction (LVEF). However, the limitations of this approach are well-documented, with a large number of SCDs occurring in individuals who do not meet the current criteria for high-risk designation. The emergence of artificial intelligence (AI) offers a paradigm shift, promising a future where we can predict SCD with far greater accuracy and personalize preventive strategies.

The Shortcomings of Conventional Risk Stratification

The use of LVEF as the primary gatekeeper for implantable cardioverter-defibrillator (ICD) therapy has been a cornerstone of SCD prevention. While this has undoubtedly saved lives, it is an imperfect solution. A substantial number of patients who receive ICDs based on low LVEF never experience a life-threatening arrhythmia, while a majority of SCD events occur in patients with a preserved or only mildly reduced LVEF [1]. This highlights a critical unmet need for more sophisticated and individualized risk assessment tools that can look beyond a single, crude measure of cardiac function.

The Power of AI in Cardiology

Artificial intelligence, particularly machine learning (ML) and deep learning (DL), is exceptionally well-suited to tackle the complexity of SCD prediction. These technologies can analyze vast and heterogeneous datasets, identifying subtle patterns and non-linear relationships that are invisible to traditional statistical methods. By integrating data from various sources, AI models can create a much more comprehensive and nuanced picture of an individual's

risk.

Recent research has demonstrated the potential of AI in this domain. For instance, AI models are being developed to analyze standard 12-lead electrocardiograms (ECGs) with a level of detail far exceeding human interpretation. These models can detect minute abnormalities in cardiac electrical activity that may presage a fatal arrhythmia [2]. A 2024 study by Kolk et al. showed that a deep learning model applied to ECG data could predict SCD with a high degree of accuracy, outperforming traditional risk factors [2].

Beyond the ECG: Multimodal AI

The true power of AI in SCD prediction may lie in its ability to synthesize information from multiple sources. This “multimodal” approach can combine ECG data with other crucial information, such as:

Cardiac Imaging: *Cardiac magnetic resonance (CMR) imaging, particularly with late gadolinium enhancement (LGE), can visualize the extent and architecture of myocardial fibrosis, a key substrate for ventricular arrhythmias. AI can analyze these complex 3D images to quantify scar tissue and identify high-risk patterns that are not apparent to the naked eye [3].*

Genomic Data: The role of genetic predisposition in SCD is increasingly recognized. AI can analyze large-scale genomic datasets to identify novel genetic markers associated with SCD risk. ***Electronic Health Records (EHRs):*** *EHRs contain a wealth of longitudinal data, including comorbidities, medications, and laboratory results. AI can mine this data to identify novel risk factors and create dynamic risk prediction models that evolve over time.*

Challenges and Future Directions

Despite the immense promise of AI, several challenges must be addressed before these technologies can be widely implemented in clinical practice. These include the need for large, high-quality datasets for model training and validation, the “black box” nature of some AI models, and the need for robust regulatory frameworks. Furthermore, ensuring that these models are generalizable across different populations and healthcare systems is crucial.

The future of SCD prediction will likely involve a synergistic approach, where AI-powered tools augment the expertise of clinicians. Imagine a future where a patient’s routine ECG is automatically analyzed by an AI algorithm, which then flags them as high-risk for SCD. This could trigger further investigation with advanced imaging and genetic testing, ultimately leading to the timely implementation of preventive therapies like ICDs or targeted pharmacological interventions. While we are not there yet, the rapid pace of research in this area suggests that AI-powered SCD prediction is not a matter of “if,” but “when.”

References

[1] Buxton, A. E., Lee, K. L., Hafley, G. E., Pires, L. A., Fisher, J. D., Gold, M. R., ... & Josephson, M. E. (2007). *Limitations of ejection fraction for prediction of sudden death risk in patients with coronary artery disease: lessons from the*

MUSTT study. Journal of the American College of Cardiology, 50(12), 1150-1157.

[2] *Kolk, M. Z. H., Ruipérez-Campillo, S., Wilde, A. A. M., Knops, R. E., Narayan, S. M., & Tjong, F. V. Y. (2024). Prediction of sudden cardiac death using artificial intelligence: Current status and future directions. Heart Rhythm, 22(3), 756-766.*

[3] *Popescu, D., O'Neil, A., & Trew, M. (2022). Deep learning for scar quantification in cardiac MRI. Frontiers in Cardiovascular Medicine, 9*, 843335.*

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2020 Rasit Dinc