

Can AI Predict Stroke Risk from Clinical Data?

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: December 20, 2020 | AI in Neurology

[DOI: 10.5281/zenodo.17998677](https://doi.org/10.5281/zenodo.17998677)

Abstract

Stroke remains a leading cause of mortality and long-term disability worldwide, making its prevention a critical public health priority. For decades, clinici...

Can AI Predict Stroke Risk from Clinical Data?

Author: Rasit Dinc

Introduction

Stroke remains a leading cause of mortality and long-term disability worldwide, making its prevention a critical public health priority. For decades, clinicians have relied on traditional risk stratification tools, such as the CHA2DS2-VASc score, to identify individuals at high risk and guide preventive strategies. While these tools have been invaluable, they possess inherent limitations, often relying on a limited set of established risk factors and offering a generalized assessment that may not capture the full complexity of an individual's risk profile. In the era of big data and computational medicine, a new frontier is emerging: the use of Artificial Intelligence (AI) to provide a more nuanced, accurate, and personalized prediction of stroke risk.

The Role of Artificial Intelligence in Predictive Medicine

Artificial Intelligence, particularly its subfields of machine learning (ML) and deep learning (DL), is revolutionizing healthcare by transforming vast and complex datasets into actionable clinical insights. Unlike traditional statistical models that are explicitly programmed, ML algorithms learn directly from data, identifying intricate patterns and relationships that may be imperceptible to human observers. In the context of stroke prediction, this means AI can analyze thousands of variables from electronic health records (EHRs), including demographic data, laboratory results, imaging scans, and electrocardiogram (ECG) signals, to construct highly sophisticated predictive models.

How AI Models Assess Stroke Risk

The power of AI lies in its ability to move beyond conventional risk factors. For

instance, an ML model can analyze subtle variations in a patient's ECG that are not captured by standard clinical interpretation but are predictive of future atrial fibrillation, a major risk factor for stroke [3]. Similarly, deep learning models can analyze retinal images or brain scans to detect signs of silent brain infarction or other vascular pathologies that indicate an elevated stroke risk. By integrating these diverse data streams, AI creates a holistic and dynamic picture of a patient's cerebrovascular health.

Evidence from Recent Research

A growing body of evidence supports the potential of AI in stroke risk prediction. A 2025 systematic review published in the *International Journal of Medical Informatics* examined 49 studies and found that machine learning models could predict stroke risk with a high degree of accuracy, with Area Under the Curve (AUC) values ranging from 0.64 to as high as 0.99 [1]. Notably, in studies where a direct comparison was made, ML models consistently outperformed traditional risk scores. The research also highlighted AI's ability to identify novel risk factors from routine clinical data, opening new avenues for understanding stroke pathophysiology.

Challenges and the Path Forward

Despite these promising results, the widespread adoption of AI for stroke prediction faces several significant hurdles. The same systematic review noted that many studies were hampered by limited dataset quality, a high risk of overfitting (where the model performs well on training data but poorly on new data), and a lack of external validation [1]. Furthermore, the so-called "black box" nature of some complex AI models presents a challenge for clinical acceptance, as clinicians need to understand the rationale behind a model's prediction to trust and act upon it. Therefore, the development of explainable AI (XAI) is a critical area of ongoing research.

Moving forward, the successful integration of AI into routine stroke care will require a multi-faceted approach. This includes the curation of large, high-quality, and diverse datasets for model training and validation; the development of robust and transparent AI models that are externally validated across different patient populations; and the creation of user-friendly clinical decision support systems that seamlessly integrate with existing EHRs. Collaboration between data scientists, clinicians, and healthcare administrators will be paramount to navigating the ethical, legal, and practical challenges of implementing AI in a real-world clinical setting.

Conclusion

The question is not whether AI *can* predict stroke risk from clinical data, but rather how we can best harness its power to improve patient outcomes. The evidence to date is compelling: AI holds the potential to revolutionize stroke prevention by providing a more accurate, personalized, and timely assessment of risk than ever before. While significant challenges remain, the rapid pace of innovation in AI and the growing availability of rich clinical datasets suggest that we are on the cusp of a new era in preventive neurology. For health professionals, embracing this technology and actively participating in its

development and validation will be key to unlocking its full potential and, ultimately, saving lives.

References

- [1] Heseltine-Carp, W., Courtman, M., Browning, D., Kasabe, A., Allen, M., Streeter, A., ... & Mullin, S. (2025). Machine learning to predict stroke risk from routine hospital data: A systematic review. *International Journal of Medical Informatics*, 196, 105811.
[<https://www.sciencedirect.com/science/article/pii/S1386505625000280>]
(<https://www.sciencedirect.com/science/article/pii/S1386505625000280>)
- [2] Moulaei, K., et al. (2024). Explainable artificial intelligence for stroke prediction using routine clinical data. *Scientific Reports*, 14(1), 82931.
[<https://www.nature.com/articles/s41598-024-82931-5>]
(<https://www.nature.com/articles/s41598-024-82931-5>)
- [3] Chahine, Y., et al. (2023). Machine Learning and the Conundrum of Stroke Risk Prediction. *Journal of the American College of Cardiology*, 82(1), 89-91.
[<https://pmc.ncbi.nlm.nih.gov/articles/PMC10326666/>]
(<https://pmc.ncbi.nlm.nih.gov/articles/PMC10326666/>)

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2020 Rasit Dinc