

Can AI Predict Heart Attack Risk? A Deep Dive into Digital Health and Cardiovascular Science

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: May 8, 2024 | Medical Imaging AI

DOI: [10.5281/zenodo.17997120](https://doi.org/10.5281/zenodo.17997120)

Abstract

The integration of Artificial Intelligence (AI) into medicine is rapidly transforming diagnostics and prognostics. One of the most promising and impactful applications is in **cardiovascular risk prediction**, specifically the ability of AI models to forecast the likelihood of a heart attack or other major cardiac events. This shift from traditional, static risk scores to dynamic, data-driven prediction models represents a significant leap forward in preventive cardiology.

The Limitations of Traditional Risk Scores

For decades, clinicians have relied on established risk calculators, such as the Framingham Risk Score or the Pooled Cohort Equations (PCE), to estimate a patient's 10-year risk of atherosclerotic cardiovascular disease (ASCVD). While foundational, these models are often limited by their reliance on a small, fixed set of variables (age, sex, cholesterol levels, blood pressure, smoking status) and their inability to capture the complex, non-linear interactions between thousands of potential risk factors [1].

Traditional models provide a static snapshot, whereas cardiovascular risk is a dynamic process influenced by genetics, lifestyle, and subtle changes in physiological data. This is where the computational power of AI provides a paradigm shift.

AI: Processing the Unseen Data

AI, particularly **Machine Learning (ML)** and **Deep Learning (DL)**, excels at identifying complex patterns within massive, high-dimensional datasets that are invisible to the human eye or conventional statistical methods. In cardiology, AI models are trained on diverse data sources, including:

1. **Electronic Health Records (EHR):** Analyzing structured data (lab results, diagnoses, medications) and unstructured data (clinical notes) to find subtle

correlations [2]. 2. **Medical Imaging:** Interpreting complex images like cardiac MRI, CT scans (e.g., Coronary Artery Calcium scoring), and echocardiograms to quantify risk factors like plaque burden or ventricular function [3]. 3. **Electrocardiograms (ECG):** Deep learning models can analyze raw ECG signals to detect subtle electrical abnormalities indicative of future heart failure or atrial fibrillation, often before a human cardiologist can identify them [4]. 4. **Genomic Data:** Integrating genetic markers to create highly personalized risk profiles.

Recent academic reviews highlight the impressive performance of these models. Studies have shown that AI algorithms can achieve high accuracy, with some models predicting conditions like heart failure (HF) and atrial fibrillation (AF) with accuracy ranging from **90.9% to 95.9%** [5]. These models move beyond simple correlation to provide a more nuanced, individualized assessment of risk.

The Challenge of Clinical Integration and Bias

Despite the compelling results in research settings, the path to widespread clinical adoption is not without hurdles. The primary challenges revolve around **explainability** and **bias**.

Explainability (XAI): *Many powerful AI models, particularly deep learning networks, operate as "black boxes." Clinicians require Explainable AI (XAI) techniques to understand why a model made a specific prediction. Without this transparency, trust and clinical acceptance remain low, as a doctor must be able to justify a life-altering treatment decision [6].* **Data Bias:** AI models are only as good as the data they are trained on. If the training data disproportionately represents certain demographics (e.g., predominantly white, male populations), the model may exhibit **algorithmic bias**, leading to inaccurate or unfair predictions for underrepresented groups. Addressing this requires rigorous external validation across diverse patient cohorts [7].

The Future of Personalized Preventive Cardiology

The trajectory of AI in cardiovascular health is clear: it is moving toward a future of **personalized preventive cardiology**. AI-driven risk stratification will enable truly precision medicine, allowing for targeted, early interventions for those at highest risk, while avoiding unnecessary treatment for those at low risk.

The next generation of AI tools will likely integrate data from wearable devices, providing continuous, real-time monitoring of heart rate variability, sleep patterns, and activity levels. This continuous stream of data, combined with EHR and imaging data, will create a **digital twin** of the patient's cardiovascular system, offering unparalleled predictive power.

For more in-depth analysis on the ethical implications and technological advancements in digital health and AI, the resources at [\[www.rasitdinc.com\]](http://www.rasitdinc.com) (<https://www.rasitdinc.com>) provide expert commentary and professional insights into the future of this rapidly evolving field.

Conclusion

The answer to the question, "Can AI predict heart attack risk?" is a resounding **yes**, with the caveat that this technology is still maturing. AI models are already demonstrating superior predictive accuracy compared to traditional methods by leveraging vast, complex datasets. As researchers and clinicians continue to collaborate on issues of explainability and bias, AI is poised to become an indispensable tool, transforming cardiovascular care from reactive treatment to proactive, personalized prevention.

**

References

[1] *Y. Wang, et al. (2025). Machine learning in cardiovascular risk assessment. <https://pubmed.ncbi.nlm.nih.gov/40191920/>* [2] *M. L. Tsai, et al. (2025). Harnessing Electronic Health Records and Artificial Intelligence for Cardiovascular Disease Risk Prediction. <https://www.ahajournals.org/doi/10.1161/JAHA.124.036946>* [3] *T. J. Poterucha, et al. (2025). Detecting structural heart disease from electrocardiograms with AI assistance. <https://www.nature.com/articles/s41586-025-09227-0>* [4] *M. H. Shuja, et al. (2025). Harnessing Artificial Intelligence in Cardiology. <https://pmc.ncbi.nlm.nih.gov/articles/PMC12139645/>* [5] *M. Singh, et al. (2024). Artificial intelligence for cardiovascular disease risk assessment in personalised framework: a scoping review. <https://pmc.ncbi.nlm.nih.gov/articles/PMC11154124/>* [6] *Y. Cai, et al. (2024). Artificial intelligence in the risk prediction models of cardiovascular disease and development of an independent validation screening tool: a systematic review. <https://link.springer.com/article/10.1186/s12916-024-03273-7>* [7] *A. Mihan, et al. (2024). Artificial intelligence bias in the prediction and detection of cardiovascular disease*. <https://www.nature.com/articles/s44325-024-00031-9>*
