

Can AI Improve My Treatment Adherence? A Professional and Academic Perspective

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: March 16, 2022 | Digital Therapeutics

DOI: [10.5281/zenodo.17997993](https://doi.org/10.5281/zenodo.17997993)

Abstract

Can AI Improve My Treatment Adherence? A Professional and Academic Perspective
Introduction: The Adherence Challenge in Modern Healthcare Treatment adhe...

Can AI Improve My Treatment Adherence? A Professional and Academic Perspective

Introduction: The Adherence Challenge in Modern Healthcare

Treatment adherence—the degree to which a patient correctly follows medical advice—is a cornerstone of effective healthcare. Non-adherence to medication, lifestyle changes, or follow-up appointments is a global challenge, leading to poorer health outcomes, increased hospitalizations, and significant economic burden. In the United States alone, non-adherence is estimated to cause up to 125,000 deaths and cost the healthcare system between \$100 billion and \$300 billion annually [^4]. Traditional interventions, such as patient education and reminder calls, often fall short because they fail to address the multifaceted nature of non-adherence, which can be intentional (e.g., due to side effects or cost) or unintentional (e.g., forgetfulness). This persistent gap has opened the door for a new generation of solutions, with **Artificial Intelligence (AI)** emerging as a powerful tool to personalize and optimize adherence strategies.

The Mechanism: How AI Addresses Non-Adherence

AI's potential in this domain stems from its ability to process vast, complex datasets and identify patterns that are invisible to human analysis. AI systems, particularly those employing **Machine Learning (ML)**, are being deployed in several key areas to create highly personalized and effective interventions:

1. **Predictive Modeling and Risk Stratification:** AI algorithms can analyze a patient's electronic health records (EHRs), demographic data, social determinants of health, and even past adherence behavior to predict their risk of non-adherence. By identifying high-risk individuals early, healthcare providers can proactively intervene, shifting the focus from reactive to preventative care. For example, ML models can predict adherence to chronic

disease medications with high accuracy, allowing for targeted resource allocation [^5].

2. Personalized Interventions and Just-in-Time Adaptive Interventions (JITAI): Unlike one-size-fits-all reminders, AI can tailor the timing, channel (e.g., text, app notification, voice call), and content of adherence support. This is often achieved through JITAI frameworks, where the AI determines the optimal moment to deliver an intervention based on real-time data from the patient's environment, schedule, and psychological state. For instance, an AI-powered platform might determine that a patient responds best to a motivational text message at 7:30 PM, rather than a generic alarm at noon, significantly increasing the likelihood of a positive behavioral change.

3. Behavioral Nudging and Feedback Loops: AI-driven chatbots and digital health apps provide real-time feedback and behavioral nudges. These tools can integrate with wearable devices and smart pill bottles to monitor actual medication intake, offering immediate, context-aware support. Studies have shown that AI-based tools can improve medication adherence by a significant margin, with reported improvements ranging from 6.7% to over 30% in randomized clinical trials [^1]. The continuous feedback loop provided by AI systems helps patients build self-efficacy and sustain long-term adherence.

Academic Evidence and Real-World Applications

The academic literature increasingly supports the efficacy of AI in this field. Systematic reviews and scoping reviews have categorized and analyzed the use of ML for actions related to medication adherence, confirming its utility in chronic disease management, such as diabetes and cardiovascular conditions [^2]. These reviews highlight that the most successful AI interventions often combine predictive analytics with personalized behavioral strategies.

One notable application involves the use of AI platforms on mobile devices to measure and increase medication adherence in high-risk populations, such as stroke survivors [^3]. These platforms leverage sophisticated analytics to not only remind patients but also to understand *why* adherence is failing—be it forgetfulness, cost, or side effects—and adjust the support strategy accordingly. Furthermore, AI is being used to analyze patient-provider communication, identifying linguistic patterns that correlate with better adherence outcomes, which can then be used to train healthcare professionals [^6].

Ethical Considerations and the Future of Digital Health

While the potential benefits are immense, the deployment of AI in adherence must be approached with careful consideration of ethical implications. Data privacy, algorithmic bias, and the need for human oversight remain critical considerations. Algorithms trained on unrepresentative data could exacerbate health disparities by misidentifying or incorrectly intervening with certain patient populations. Therefore, transparency and validation of AI models are paramount to ensure equitable and trustworthy healthcare solutions.

For professionals and the general public interested in the intersection of digital health and AI, understanding these mechanisms and their ethical frameworks is crucial. The future of adherence support is moving toward

highly integrated, predictive, and personalized systems.

For more in-depth analysis on this topic, including expert commentary on the ethical deployment of AI in clinical settings and the latest research on digital health interventions, the resources at [www.rasitdinc.com] (<https://www.rasitdinc.com>) provide expert commentary.

Conclusion

The answer to the question, "Can AI improve my treatment adherence?" is a resounding yes. By moving beyond simple reminders to offer predictive, personalized, and context-aware support, AI is poised to become an indispensable partner in patient care. As these technologies mature, and as ethical and regulatory frameworks evolve, we can anticipate a future where non-adherence is significantly mitigated, leading to a healthier, more compliant patient population globally.

**

[^1]: Reis, Z. S. N., et al. (2025). *Artificial intelligence-based tools for patient support to improve medication adherence: A systematic review*. Frontiers in Digital Health. [^2]: Bohlmann, A., et al. (2021). *Machine Learning and Medication Adherence: Scoping Review*. JMIR Medical Informatics. [^3]: Labovitz, D. L., et al. (2017). *Using Artificial Intelligence to Reduce the Risk of Stroke Recurrence*. Stroke. [^4]: Cutler, D. M., et al. (2018). *The Costs of Nonadherence to Medications for Chronic Conditions*. Health Affairs. [^5]: Al-Arifi, M. N., et al. (2023). *Machine learning models for predicting medication adherence in chronic diseases: A systematic review*. Journal of Biomedical Informatics. [^6]: Greene, J. A., et al. (2020). *Artificial intelligence and the future of medication adherence*. JAMA Internal Medicine*.