

Beyond Approval: How the FDA Monitors AI and Machine Learning in Medical Devices

Rasit Dinc

Rasit Dinc Digital Health & AI Research

Published: December 23, 2022 | AI Diagnostics

DOI: [10.5281/zenodo.17997670](https://doi.org/10.5281/zenodo.17997670)

Abstract

The integration of Artificial Intelligence AI and Machine Learning ML into medical devices, particularly Software as a Medical Device SaMD, promises a revolu...

The integration of Artificial Intelligence (AI) and Machine Learning (ML) into medical devices, particularly Software as a Medical Device (SaMD), promises a revolution in healthcare diagnostics and treatment. However, unlike traditional medical devices, AI/ML models are often **adaptive**, meaning their performance can change over time as they interact with new, real-world data. This dynamic nature presents a unique regulatory challenge: how does the U.S. Food and Drug Administration (FDA) ensure the continued safety and effectiveness of these devices *after* they have been approved or cleared for market? The FDA addresses this through a multi-faceted post-market surveillance framework built on two primary pillars: the traditional Medical Device Reporting (MDR) system and the innovative Predetermined Change Control Plan (PCCP) [1].

The Foundation: Medical Device Reporting (MDR)

The first line of defense in post-market monitoring is the established Medical Device Reporting (MDR) program. This system requires manufacturers, importers, and device user facilities to report adverse events and product problems to the FDA [2]. For AI/ML-enabled devices, the MDR system is crucial for identifying potential issues such as:

Performance Drift: *A decline in the device's accuracy or reliability due to changes in the patient population, data input, or clinical environment.* **Bias Amplification:** The model performing poorly or inequitably for specific demographic groups not adequately represented in the training data. **System Failures:** *Technical malfunctions or integration errors that lead to incorrect outputs or patient harm.*

While the MDR system provides essential feedback on real-world safety concerns, its reactive nature is a limitation for adaptive AI. It is designed to capture adverse events after they occur, which may be too slow for models that can change and degrade rapidly. This limitation necessitates a more

proactive, forward-looking regulatory tool.

The Proactive Approach: Predetermined Change Control Plans (PCCP)

Recognizing the need for a regulatory pathway that supports continuous learning and improvement without requiring a new premarket submission for every minor change, the FDA introduced the concept of the Predetermined Change Control Plan (PCCP) [3]. The PCCP is a core component of the FDA's proposed regulatory framework for AI/ML-based SaMD and represents a significant shift toward a "Total Product Lifecycle" (TPLC) approach.

A PCCP, which is reviewed and authorized by the FDA before the device is marketed, essentially serves as a "rulebook" for future modifications. It consists of three key elements that define the scope of permissible post-market changes:

1. Description of Modifications: This section details the types of changes the manufacturer intends to implement, such as updates to the model's training data, changes to the algorithm's architecture, or adjustments to the device's clinical claims. **2. Modification Protocol:** This is the "how-to" guide. It specifies the methodology, testing, and validation protocols that the manufacturer will use to ensure the modified device remains safe and effective. This includes performance metrics, statistical analyses, and acceptance criteria that must be met before the change is deployed. **3. Impact Assessment:** This outlines the manufacturer's plan for evaluating the impact of the changes on the device's safety and effectiveness, including a strategy for monitoring the device's performance in the real world after the change is implemented.

The PCCP allows manufacturers to make pre-specified, validated changes to their AI models without further FDA review, provided they adhere strictly to the authorized plan. This mechanism enables adaptive AI to evolve and improve based on real-world data while maintaining a high standard of regulatory oversight.

Real-World Performance Monitoring and Transparency

*Beyond the formal reporting and change control mechanisms, the FDA emphasizes the importance of **real-world performance monitoring** and **transparency** [4]. Manufacturers are expected to continuously monitor their AI/ML models for performance degradation, bias, and other risks. This often involves:*

Data Integrity Checks: Monitoring the quality and distribution of incoming data to ensure it remains consistent with the data used for validation.

Performance Metrics Tracking: Continuously tracking key performance indicators (e.g., sensitivity, specificity, AUC) against pre-defined thresholds.

Transparency to Users: Providing clear, accessible information to users (clinicians and patients) about the device's intended use, the data it was trained on, and the types of changes that have been implemented under the PCCP.

The FDA's approach is a dynamic balance between fostering innovation and ensuring patient safety. It acknowledges that AI/ML devices are not static products but rather evolving systems that require continuous, proactive monitoring.

For more in-depth analysis on the intersection of digital health, AI regulation, and the future of medical technology, the resources at [www.rasitdinc.com] (<https://www.rasitdinc.com>) provide expert commentary and professional insight.

Conclusion

The FDA's post-market monitoring of approved AI/ML medical devices is a sophisticated and evolving process. It moves beyond the traditional, reactive MDR system to embrace the proactive, forward-looking structure of the Predetermined Change Control Plan (PCCP). By requiring manufacturers to pre-specify and validate their modification protocols, the FDA has created a regulatory environment that supports the iterative nature of AI while rigorously safeguarding public health. As AI continues to advance, this framework will be critical in ensuring that the next generation of smart medical devices remains safe, effective, and equitable for all patients.

References

- [1] FDA. Artificial Intelligence and Machine Learning (AI/ML) Enabled Medical Devices. Available at: <https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices>
- [2] FDA. Medical Device Reporting (MDR). Available at: <https://www.fda.gov/medical-devices/postmarket-requirements-devices/medical-device-reporting-mdr>
- [3] FDA. Marketing Submission Recommendations for a Predetermined Change Control Plan for Artificial Intelligence-Enabled Device Software Functions. Available at: <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/marketing-submission-recommendations-predetermined-change-control-plan-artificial-intelligence>
- [4] FDA. Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD). Available at: <https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf>

Rasit Dinc Digital Health & AI Research

<https://rasitdinc.com>

© 2022 Rasit Dinc